Accessibility navigation


Ensemble transform Kalman-Bucy filters

Amezcua, J., Ide, K., Kalnay, E. and Reich, S. (2013) Ensemble transform Kalman-Bucy filters. Quarterly Journal of the Royal Meteorological Society, 140 (680). pp. 995-1004. ISSN 1477-870X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/qj.2186

Abstract/Summary

Two recent works have adapted the Kalman–Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman–Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:33765
Uncontrolled Keywords:Ensemble Kalman Filter; Kalman–Bucy Filter; weight-based formulations; stiff ODE
Publisher:Royal Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation