Accessibility navigation


A continuum anisotropic model of sea-ice dynamics

Wilchinsky, A. V. and Feltham, D. L. (2004) A continuum anisotropic model of sea-ice dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460 (2047). pp. 2105-2140. ISSN 1364-5021

[img] Text
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

932kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1098/rspa.2004.1282

Abstract/Summary

We develop the essential ingredients of a new, continuum and anisotropic model of sea-ice dynamics designed for eventual use in climate simulation. These ingredients are a constitutive law for sea-ice stress, relating stress to the material properties of sea ice and to internal variables describing the sea-ice state, and equations describing the evolution of these variables. The sea-ice cover is treated as a densely flawed two-dimensional continuum consisting of a uniform field of thick ice that is uniformly permeated with narrow linear regions of thinner ice called leads. Lead orientation, thickness and width distributions are described by second-rank tensor internal variables: the structure, thickness and width tensors, whose dynamics are governed by corresponding evolution equations accounting for processes such as new lead generation and rotation as the ice cover deforms. These evolution equations contain contractions of higher-order tensor expressions that require closures. We develop a sea-ice stress constitutive law that relates sea-ice stress to the structure tensor, thickness tensor and strain rate. For the special case of empty leads (containing no ice), linear closures are adopted and we present calculations for simple shear, convergence and divergence.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:35292
Publisher:Royal Society Publishing

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation