Accessibility navigation


Solvent-Dependent Formation of Os(0) Complexes by Electrochemical Reduction of [Os(CO)(2,2′-bipyridine)(L)Cl2]; L = Cl−,PrCN

Tory, J., King, L., Maroulis, A., Haukka, M., Calhorda, M.J. and Hartl, F. (2014) Solvent-Dependent Formation of Os(0) Complexes by Electrochemical Reduction of [Os(CO)(2,2′-bipyridine)(L)Cl2]; L = Cl−,PrCN. Inorganic Chemistry, 53 (3). pp. 1382-1396. ISSN 0020-1669

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/ic402146t

Abstract/Summary

Cyclic voltammetry and ultraviolet−visible/infrared (UV−vis/IR) spectroelectrochemistry were used to study the cathodic electrochemical behavior of the osmium complexes mer-[OsIII(CO) (bpy)Cl3] (bpy = 2,2′-bipyridine) and trans(Cl)-[OsII(CO) (PrCN)(bpy)Cl2] at variable temperature in different solvents (tetrahydrofuran (THF), butyronitrile (PrCN), acetonitrile (MeCN)) and electrolytes (Bu4NPF6, Bu4NCl). The precursors can be reduced to mer-[OsII(CO) (bpy•−)Cl3]2− and trans(Cl)-[OsII(CO)(PrCN) (bpy•−)Cl2]−, respectively, which react rapidly at room temperature, losing the chloride ligands and forming Os(0) species. mer-[OsIII(CO) (bpy)Cl3] is reduced in THF to give ultimately an Os−Os-bonded polymer, probably [Os0(CO) (THF)-(bpy)]n, whereas in PrCN the well-soluble, probably mononuclear [Os0(CO) (PrCN)(bpy)], species is formed. The same products were observed for the 2 electron reduction of trans(Cl)-[OsII(CO)(PrCN) (bpy)Cl2] in both solvents. In MeCN, similar to THF, the[Os0(CO) (MeCN)(bpy)]n polymer is produced. It is noteworthy that the bpy ligand in mononuclear [Os0(CO) (PrCN)(bpy)] is reduced to the corresponding radical anion at a significantly less negative potential than it is in polymeric [Os0(CO) (THF)(bpy)]n: ΔE1/2 = 0.67 V. Major differences also exist in the IR spectra of the Os(0) species: the polymer shows a broad ν(CO) band at much smaller wavenumbers compared to the soluble Os(0) monomer that exhibits a characteristic ν(Pr-CN) band below 2200 cm−1 in addition to the intense and narrow ν(CO) absorption band. For the first time, in this work the M0-bpy(M = Ru, Os) mono- and dicarbonyl species soluble in PrCN have been formulated as a mononuclear complex. Density functional theory (DFT) and time-dependent-DFT calculations confirm the Os(0) oxidation state and suggest that [Os0(CO)(PrCN)(bpy)] is a square planar moiety. The reversible bpy-based reduction of [Os0(CO) (PrCN)(bpy)] triggers catalytic reduction of CO2 to CO and HCOO−.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:36140
Publisher:American Chemical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation