Accessibility navigation


Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C

Downloads

Downloads per month over past year

Hoogakker, B. A. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice, I. C., Allen, J., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M., Frechette, B., Lozano-Garcia, S. , Gosling, W. D., Granoszewski, W., Grimm, E. C., Gruger, E., Hanselman, J., Harrison, S. P., Hill, T. R., Huntley, B., Jimenez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D., McKenzie, M., Muller-Nakagawa, U., Nakagawa, T., Novenko, E., Penny, D., Sadori, L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A., Whitlock, C. and Tzedakis, C. (2015) Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C. Climate of Past Discussions, 11. pp. 1031-1091.

[img]
Preview
Text (open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1457Kb

To link to this article DOI: 10.5194/cpd-11-1031-2015

Abstract/Summary

A new global synthesis and biomization of long (>40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Faculty of Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Centre for Past Climate Change
ID Code:40025
Publisher:Europe Geosciences Union

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation