Accessibility navigation


Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function

Fan, L. M., Cahill-Smith, S., Geng, L., Du, J., Brooks, G. and Li, J.-m. (2017) Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radical Biology and Medicine, 108. pp. 940-951. ISSN 0891-5849

[img]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.

1MB
[img] Text - Accepted Version
· Restricted to Repository staff only
· Available under License Creative Commons Attribution Non-commercial No Derivatives.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.freeradbiomed.2017.05.008

Abstract/Summary

Oxidative stress attributable to the activation of a Nox2-containing NADPH oxidase is involved in the development of vascular diseases and in aging. However, the mechanism of Nox2 activation in normal aging remains unclear. In this study, we used age-matched wild-type (WT) and Nox2 knockout (KO) mice at 3–4 months (young); 11–12 months (middle-aged) and 21–22 months (aging) to investigate age-related metabolic disorders, Nox2 activation and endothelial dysfunction. Compared to young mice, middle-aged and aging WT mice had significant hyperglycaemia, hyperinsulinaemia, increased systemic oxidative stress and higher blood pressure. Endothelium-dependent vessel relaxation to acetylcholine was significantly impaired in WT aging aortas, and this was accompanied by increased Nox2 and ICAM-1 expressions, MAPK activation and decreased insulin receptor expression and signaling. However, these aging-associated disorders were significantly reduced or absent in Nox2KO aging mice. The effect of metabolic disorder on Nox2 activation and endothelial dysfunction was further confirmed using high-fat diet-induced obesity and insulin resistance in middle-aged WT mice treated with apocynin (a Nox2 inhibitor). In vitro experiments showed that in response to high glucose plus high insulin challenge, WT coronary microvascular endothelial cells increased significantly the levels of Nox2 expression, activation of stress signaling pathways and the cells were senescent, e.g. increased p53 and β–galactosidase activity. However,these changes were absent in Nox2KO cells. In conclusion, Nox2 activation in response to aging-associated hyperglycaemia and hyperinsulinaemia plays a key role in the oxidative damage of vascular function. Inhibition or knockout of Nox2 preserves endothelial function and improves global metabolism in old age.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Faculty of Life Sciences > School of Biological Sciences > Biomedical Sciences
ID Code:70338
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation