Accessibility navigation


The joint influence of albedo and insulation on roof performance: an observational study

Ramamurthy, P., Sun, T. ORCID: https://orcid.org/0000-0002-2486-6146, Rule, K. and Bou-Zeid, E. (2015) The joint influence of albedo and insulation on roof performance: an observational study. Energy and Buildings, 93. pp. 249-258. ISSN 0378-7788

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.enbuild.2015.02.040

Abstract/Summary

This article focuses on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. Our analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months, insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. This has important implications for determining the peak heating and cooling times.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:71110
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation