Accessibility navigation


Crown ethers: novel permeability enhancers for ocular drug delivery?

Morrison, P. W.J., Porfiryeva, N. N., Chahal, S., Salakhov, I. A., Lacourt, C., Semina, I. I., Moustafine, R. I. and Khutoryanskiy, V. V. (2017) Crown ethers: novel permeability enhancers for ocular drug delivery? Molecular Pharmaceutics, 14 (10). pp. 3528-3538. ISSN 1543-8392

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/acs.molpharmaceut.7b00556

Abstract/Summary

Crown ethers are cyclic molecules consisting of a ring containing several ether groups. The most common and important members of this series are 12-crown-4 (12C4), 15-crown-5 (15C5), and 18-crown-6 (18C6). These container molecules have the ability to sequester metal ions and their complexes with drugs are able to traverse cell membranes. This study investigated 12C4, 15C5 and 18C6 for their ability to increase solubility of ocular drugs and enhance their penetration into the cornea. Phase solubility analysis determined crown ethers’ ability to enhance the solubility of riboflavin, a drug used for the therapy of keratoconus, and these solutions were investigated for ocular drug permeation enhancing properties. Atomic absorption spectroscopy demonstrated crown ether solutions ability to sequester Ca2+ from corneal epithelia and crown ether mediated adsorption of riboflavin into the stroma was investigated. Induced corneal opacity studies assessed potential toxicity of crown ethers. Crown ethers enhanced riboflavin’s aqueous solubility and its penetration into in vitro bovine corneas; the smaller sized crown ethers gave greatest enhancement. They were shown to sequester Ca2+ ions from corneal epithelia, doing so loosens cellular membrane tight junctions thus enhancing riboflavin penetration. Induced corneal opacity was similar to that afforded by benzalkonium chloride and less than is produced using polyaminocarboxylic acids. However, in vivo experiments performed in rats with 12C4 did not show any statistically significant permeability enhancement compared to enhancer-free formulation.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
ID Code:72173
Publisher:American Chemical Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation