Accessibility navigation


Significance of aerosol radiative effect in energy balance control on global precipitation change

Suzuki, K., Stephens, G. L. and Golaz, J.-C. (2017) Significance of aerosol radiative effect in energy balance control on global precipitation change. Atmospheric Science Letters, 18 (10). pp. 389-395. ISSN 1530-261X

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

633kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/asl.780

Abstract/Summary

Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperature change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately2%K−1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:72369
Publisher:John Wiley & Sons

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation