Accessibility navigation


Atmospheric factors governing banded orographic convection

Kirshbaum, D. J. and Durran, D. R. (2005) Atmospheric factors governing banded orographic convection. Journal of the Atmospheric Sciences, 62 (10). pp. 3758-3774. ISSN 1520-0469

Full text not archived in this repository.

To link to this article DOI: 10.1175/JAS3568.1

Abstract/Summary

Atmospheric factors Governing Banded Orographic Convection The three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initiated by background thermal fluctuations embedded in the flow over a smooth mountain (without any small-scale topographic features) tends to be cellular and disorganized except that shear-parallel bands may form in flows with strong unidirectional vertical shear. The development of well-organized bands is favored when there is weak static instability inside the cloud and when the dry air surrounding the cloud is strongly stable. These bands move with the flow and distribute their cumulative precipitation evenly over the mountain upslope. Similar shear-parallel bands also develop in flows where convection is initiated by small-scale topographic noise superimposed onto the main mountain profile, but in this case stronger circulations are also triggered that create stationary rainbands parallel to the low-level flow. This second dominant mode, which is less sensitive to the atmospheric structure and the strength of forcing, is triggered by lee waves that form over small-scale topographic bumps near the upstream edge of the main orographic cloud. Due to their stationarity, these flow-parallel bands can produce locally heavy precipitation amounts.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
No Reading authors. Back catalogue items
ID Code:7247
Publisher:American Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation