Amador, J.A., and Alexander, M. (1988) Effect of humic acids on the mineralization of low concentrations of organic compounds. Soil Biology & Biochemistry 20: 185-191.
Berendsen, R.L., Pieterse, C.M.J., and Bakker, P. (2012) The rhizosphere microbiome and plant health. Trends in Plant Science 17: 478-486.
Blagodatskaya, E., and Kuzyakov, Y. (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils 45: 115-131.
Bosch, R., Moore, E.R.B., Garcia-Valdes, E., and Pieper, D.H. (1999) NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. Journal of Bacteriology 181: 2315-2322.
Celis, R., Real, M., Hermosin, M.C., and Cornejo, J. (2005) Sorption and leaching behaviour of polar aromatic acids in agricultural soils by batch and column leaching tests. European Journal of Soil Science 56: 287-297.
Chakraba.Am (1972) Genetic basis of biodegradation of salicylate in Pseudomonas Journal of Bacteriology 112: 815-&.
Chen, L., Brookes, P.C., Xu, J.M., Zhang, J.B., Zhang, C.Z., Zhou, X.Y., and Luo, Y. (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biology & Biochemistry 98: 1-10.
Clode, P.L., Kilburn, M.R., Jones, D.L., Stockdale, E.A., Cliff, J.B., Herrmann, A.M., and Murphy, D.V. (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiology 151: 1751-1757.
Colbert, S.F., Hendson, M., Ferri, M., and Schroth, M.N. (1993a) Enhanced growth and activity of a biocontrol bacterium genetically-engineered to utilize salicylate. Applied and Environmental Microbiology 59: 2071-2076.
Colbert, S.F., Schroth, M.N., Weinhold, A.R., and Hendson, M. (1993b) Enhancement of population densities of Pseudomonas putida PPG7 in agricultural ecosystems by selective feeding with the carbon source salicylate. Applied and Environmental Microbiology 59: 2064-2070.
Colbert, S.F., Isakeit, T., Ferri, M., Weinhold, A.R., Hendson, M., and Schroth, M.N. (1993c) Use of an exotic carbon source to selectively increase metabolic activity and growth of Pseudomonas putida in soil. Applied and Environmental Microbiology 59: 2056-2063.
Cray, J.A., Bell, A.N.W., Bhaganna, P., Mswaka, A.Y., Timson, D.J., and Hallsworth, J.E. (2013) The biology of habitat dominance; can microbes behave as weeds? Microbial Biotechnology 6: 453-492.
dos Santos, V., Heim, S., Moore, E.R.B., Stratz, M., and Timmis, K.N. (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environmental Microbiology 6: 1264-1286.
Dubus, I.G., Barriuso, E., and Calvet, R. (2001) Sorption of weak organic acids in soils: clofencet, 2,4-D and salicylic acid. Chemosphere 45: 767-774.
Eek, K.M., Sessions, A.L., and Lies, D.P. (2007) Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology 5: 85-95.
Eichorst, S.A., Strasser, F., Woyke, T., Schintlmeister, A., Wagner, M., and Woebken, D. (2015) Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. Fems Microbiology Ecology 91.
Galet, J., Deveau, A., Hotel, L., Frey-Klett, P., Leblond, P., and Aigle, B. (2015) Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens. Applied and Environmental Microbiology 81: 3132-3141.
Geyer, K.M., Kyker-Snowman, E., Grandy, A.S., and Frey, S.D. (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127: 173-188.
Gougoulias, C., and Shaw, L.J. (2012) Evaluation of the environmental specificity of Fluorescence In Situ Hybridization (FISH) using Fluorescence-Activated Cell Sorting (FACS) of probe (PSE1284)-positive cells extracted from rhizosphere soil. Systematic and Applied Microbiology 35: 533-540.
Gougoulias, C., Clark, J.M., and Shaw, L.J. (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture 94: 2362-2371.
Gunasekera, T.S., Dorsch, M.R., Slade, M.B., and Veal, D.A. (2003) Specific detection of Pseudomonas spp. in milk by fluorescence in situ hybridization using ribosomal RNA directed probes. Journal of Applied Microbiology 94: 936-945.
Gutierrez-Zamora, M.L., and Manefield, M. (2010) An appraisal of methods for linking environmental processes to specific microbial taxa. Reviews in Environmental Science and Bio-Technology 9: 153-185.
Hansman, R.L., and Sessions, A.L. (2016) Measuring the in situ carbon isotopic composition of distinct marine plankton populations sorted by flow cytometry. Limnology and Oceanography-Methods 14: 87-99.
Hao, W.Y., Ren, L.X., Ran, W., and Shen, Q.R. (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant and Soil 336: 485-497.
Jagadamma, S., Mayes, M.A., and Phillips, J.R. (2012) Selective sorption of dissolved organic carbon compounds by temperate soils. Plos One 7. DOI: 10.1371/journal.pone.0050434
Jehmlich, N., Vogt, C., Lunsmann, V., Richnow, H.H., and von Bergen, M. (2016) Protein-SIP in environmental studies. Current Opinion in Biotechnology 41: 26-33.
Jones, D.L. (1998) Organic acids in the rhizosphere - a critical review. Plant and Soil 205: 25-44.
Karegoudar, T.B., and Kim, C.K. (2000) Microbial degradation of monohydroxybenzoic acids. Journal of Microbiology 38: 53-61.
Khorassani, R., Hettwer, U., Ratzinger, A., Steingrobe, B., Karlovsky, P., and Claassen, N. (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. Bmc Plant Biology 11. DOI: 10.1186/1471-2229-11-121
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S. et al. (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90.
Lunsmann, V., Kappelmeyer, U., Benndorf, R., Martinez-Lavanchy, P.M., Taubert, A., Adrian, L. et al. (2016) In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environmental Microbiology 18: 1176-1186.
Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria - problems and solutions. Systematic and Applied Microbiology 15: 593-600.
Martiny, A.C., Treseder, K., and Pusch, G. (2013) Phylogenetic conservatism of functional traits in microorganisms. Isme Journal 7: 830-838.
Mayali, X., Weber, P.K., Brodie, E.L., Mabery, S., Hoeprich, P.D., and Pett-Ridge, J. (2012) High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. Isme Journal 6: 1210-1221.
McGuire, K.L., and Treseder, K.K. (2010) Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biology & Biochemistry 42: 529-535.
Miltner, A., Bombach, P., Schmidt-Brucken, B., and Kastner, M. (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111: 41-55.
Musat, N., Foster, R., Vagner, T., Adam, B., and Kuypers, M.M.M. (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. Fems Microbiology Reviews 36: 486-511.
Nielsen, U.N., Ayres, E., Wall, D.H., and Bardgett, R.D. (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science 62: 105-116.
Nishi, A., Tominaga, K., and Furukawa, K. (2000) A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. Journal of Bacteriology 182: 1949-1955.
Nowak, K.M., Miltner, A., Gehre, M., Schaeffer, A., and Kaestner, M. (2011) Formation and fate of bound residues from microbial biomass during 2,4-D degradation in soil. Environmental Science & Technology 45: 999-1006.
Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L. et al. (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America 110: 6548-6553.
Raaijmakers, J.M., and Mazzola, M. (2012) Diversity and Natural Functions of Antibiotics Produced by Beneficial and Plant Pathogenic Bacteria. In Annual Review of Phytopathology, Vol 50. VanAlfen, N.K., Leach, J.E., and Lindow, S. (eds). Palo Alto: Annual Reviews, pp. 403-424.
Ramsay, J.R., McEntee, I.D., and Hammond, P.M. (1992) Production and purification of salicylate monooxygenase from Pseudomonas cepacia ATCC 29351. Bioseparation 2: 375-383.
Santoyo, G., Orozco-Mosqueda, M.D., and Govindappa, M. (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology 22: 855-872.
Sazonova, O.I., Izmalkova, T.Y., Kosheleva, I.A., and Boronin, A.M. (2008) Salicylate degradation by Pseudomonas putida strains not involving the "Classical" nah2 operon. Microbiology 77: 710-716.
Schell, M.A. (1985) Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene 36: 301-309.
Schmidt, S.K., Lipson, D.A., and Raab, T.K. (2000) Effects of willows (Salix brachycarpa) on populations of salicylate-mineralizing microorganisms in alpine soils. Journal of Chemical Ecology 26: 2049-2057.
Silby, M.W., Winstanley, C., Godfrey, S.A.C., Levy, S.B., and Jackson, R.W. (2011) Pseudomonas genomes: diverse and adaptable. Fems Microbiology Reviews 35: 652-680.
Trivedi, P., Anderson, I.C., and Singh, B.K. (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology 21: 641-651.
Vial, L., Chapalain, A., Groleau, M.C., and Deziel, E. (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environmental Microbiology 13: 1-12.
Wang, Y., Huang, W.E., Cui, L., and Wagner, M. (2016) Single cell stable isotope probing in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology 41: 34-42.
Wieder, W.R., Allison, S.D., Davidson, E.A., Georgiou, K., Hararuk, O., He, Y.J. et al. (2015) Explicitly representing soil microbial processes in Earth system models. Global Biogeochemical Cycles 29: 1782-1800.
You, I.S., Ghosal, D., and Gunsalus, I.C. (1991) Nucleotide sequence analysis of the Pseudomonas putida PPG7 salicylate hydroxylase gene (NahG) and its 3' flanking region. Biochemistry 30: 1635-1641.
Zimmermann, M., Escrig, S., Huebschmann, T., Kirf, M.K., Brand, A., Inglis, R.F. et al. (2015) Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Frontiers in Microbiology 6. DOI: 10.3389/fmicb.2015.00243