Accessibility navigation


Collisionless distribution functions for force-free current sheets: using a pressure transformation to lower the plasma beta

Wilson, F., Neukirch, T. and Allanson, O. (2018) Collisionless distribution functions for force-free current sheets: using a pressure transformation to lower the plasma beta. Journal of Plasma Physics, 84 (3). ISSN 0022-3778

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

3MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1017/S0022377818000570

Abstract/Summary

So far, only one distribution function giving rise to a collisionless nonlinear force-free current sheet equilibrium allowing for a plasma beta less than one is known (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116; Allanson et al., J. Plasma Phys., vol. 82 (3), 2016a, 905820306). This distribution function can only be expressed as an infinite series of Hermite functions with very slow convergence and this makes its practical use cumbersome. It is the purpose of this paper to present a general method that allows us to find distribution functions consisting of a finite number of terms (therefore easier to use in practice), but which still allow for current sheet equilibria that can, in principle, have an arbitrarily low plasma beta. The method involves using known solutions and transforming them into new solutions using transformations based on taking integer powers (N) of one component of the pressure tensor. The plasma beta of the current sheet corresponding to the transformed distribution functions can then, in principle, have values as low as 1/N. We present the general form of the distribution functions for arbitrary N and then, as a specific example, discuss the case for N=2 in detail.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:77772
Publisher:Cambridge University Press

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation