Aizen, V.B., 2011. Tien Shan Glaciers. In: Sigh, V.P., Singh, P. (Eds.), Encyclopedia of Snow, Ice and Glaciers. Haritashya Springer Publisher, U.K., 1253 pp.
Aizen, V., Aizen, E., Glazirin, G., Loaiciga, H.A., 2000. Simulation of daily runoff in Central Asian alpine watersheds. J. Hydrol. 238, 15–34.
Aizen, V.B., Aizen, E.M., John, M.M., 1996. Precipitation, melt and runoff in the northern Tien Shan. J. Hydrol. 186, 229–251.
Aizen, V.B., Aizen, E.M., Melack, J.M., Dozier, J., 1997. Climatic and hydrologic changes in the Tien Shan, central Asia. J. Clim. 10, 1393–1404. doi:10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2
Annual Data on Water Regime and Resources Reports (Ezhegodnye Dannye o Rezhime i Resursah Vod Sushi), 2014 (and earlier issues). The State Hydrometeorological Service of the Republic of Kazakhstan, Almaty. 190 pp.
Bača, P., Bačová Mitková, V., 2007. Analysis of Seasonal Extreme Flows Using Peaks over Threshold Method. J. Hydrol. Hydromechanics 55, 16–22.
Birsan, M.-V., Molnar, P., Burlando, P., Pfaundler, M., 2005. Streamflow trends in Switzerland. J. Hydrol. 314, 312–329. doi:10.1016/j.jhydrol.2005.06.008
Black, A.R., Burns, J.C., 2002. Re-assessing the flood risk in Scotland. Sci. Total Environ. 294, 169–184. doi:10.1016/S0048-9697(02)00062-1
Bolch, T., Marchenko, S., 2006. Significance of glaciers, rockglaciers, and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions. Proc. Work. Assess. Snow-Glacier Water Resour. Asia 199–211.
Braun, L.N., Hagg, W., Severskiy, I.V., Young, G., 2009. Assessment of Snow, Glacier and Water Resources in Asia. IHP-HWRP, Koblenz.
Brönnimann, S., Annis, J., Dann, W., Ewen, T., Grant, A.N., Griesser, T., Krähenmann, S., Mohr, C., Scherer, M., Vogler, C., 2006. A guide for digitising manuscript climate data. Clim. Past 2, 137–144. doi:10.5194/cpd-2-191-2006
Burn, D.H., Hannaford, J., Hodgkins, G. a., Whitfield, P.H., Thorne, R., Marsh, T., 2012. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrol. Sci. J. 57, 1580–1593. doi:10.1080/02626667.2012.728705
Cao, M.S., 1998. Detection of abrupt changes in glacier mass balance in the Tien Shan Mountains. J. Glaciol. 44, 352–358.
Chen, Y., Li, W., Fang, G., Li, Z., 2017. Review article: Hydrological modeling in glacierized catchments of central Asia-status and challenges. Hydrol. Earth Syst. Sci. 21, 669–684. doi:10.5194/hess-21-669-2017
Collins, D.N., 1987. Climatic fluctuations and runoff from glacierised Alpine basins. IAHS Publ. 168, 77–89.
Dery, S.J., Stahl, K., Moore, R.D., Whitfield, P.H., Menounos, B., Burford, J.E., 2009. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. 45, 1–11. doi:10.1029/2008WR006975
Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T., Jiang, T., Su, B., Gunter, A., 2015. Water Resources Research. Water Resour. Res. 51, 4727–4750. doi:10.1002/2014WR016716
Dyurgerov, M.B., Mikhalenko, V.N., Kunakhovitch, M.G., Ushurtsev, S.N., Chaohai, L., Zichu, X., 1994. On the cause of glacier mass balance variations in the Tien Shan mountains. GeoJournal 33, 311–317.
Gieze, E., Mossig, I., Rybski, D., Bunde, A., 2007. Long-term analysis of air temperature trends in Central Asia. Erdkunde 61, 186–202.
Hagg, W., Braun, L.N., Weber, M., Becht, M., 2006. Runoff modelling in glacierized Central Asian catchments for present-day and future climate. Nord. Hydrol. 37, 93–105. doi:10.2166/nh.2006.001
Hannaford, J., 2015. Climate-driven changes in UK river flows: A review of the evidence. Prog. Phys. Geogr. 39, 29–48. doi:10.1177/0309133314536755
Hannaford, J., Buys, G., 2012. Trends in seasonal river flow regimes in the UK. J. Hydrol. 475, 158–174. doi:10.1016/j.jhydrol.2012.09.044
Harvey, C.L., Dixon, H., Hannaford, J., 2012. An appraisal of the performance of data-infilling methods for application to daily mean river flow records in the UK. Hydrol. Res. 43, 618. doi:10.2166/nh.2012.110
Jacques, J.M.S., Sauchyn, D.J., 2009. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36, 1–6. doi:10.1029/2008GL035822
Kääb, A., Frauenfelder, R., Roer, I., 2007. On the response of rockglacier creep to surface temperature increase. Glob. Planet. Change 56, 172–187. doi:10.1016/j.gloplacha.2006.07.005
Kapitsa, V., Shahgedanova, M., Machguth, H., Severskiy, I., Medeu, A., 2017. Assessment of Evolution of Mountain Lakes and Risks of Glacier Lake Outbursts in the Djungarskiy (Jetysu) Alatau, Central Asia, using Landsat Imagery and Glacier Bed Topography Modelling. Nat. Hazards Earth Syst. Sci. 1–54. doi:10.5194/nhess-2017-134
Kaser, G., Großhauser, M., Marzeion, B., Barry, R.G., 2010. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. U. S. A. 107, 21300–21305. doi:10.1073/pnas.
Kendall, M.G., 1975. Rank Correlation Methods. Griffin, London.
Kokarev, A.L., Shesterova, I.N., 2014. Assessment of modern changes in the mountain glacier systems on the southern slope of the Djungarskiy Alatau. Led i Sneg (Ice Snow) 128, 54–62.
Kokarev, A.L., Shesterova, I.N., 2011. Changes in glacier sustems of the northern slope of the Zailiiskiy Alatau in the second half of the 20th and beginning of the 21st Centuries. Led i Sneg (Ice Snow) 116, 39–46.
Kormann, C., Francke, T., Renner, M., Bronstert, A., 2015. Attribution of high resolution streamflow trends in Western Austria - An approach based on climate and discharge station data. Hydrol. Earth Syst. Sci. 19, 1225–1245. doi:10.5194/hess-19-1225-2015
Kriegel, D., Mayer, C., Hagg, W., Vorogushyn, S., Duethmann, D., Gafurov, A., Farinotti, D., 2013. Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn basin, Central Asia. Glob. Planet. Change 110, 51–61. doi:10.1016/j.gloplacha.2013.05.014
Krysanova, V., Wortmann, M., Bolch, T., Merz, B., Walter, J., Huang, S., Tong, J., Buda, S., Krysanova, V., Wortmann, M., Bolch, T., Merz, B., Duethmann, D., Walter, J., Huang, S., Tong, J., Buda, S., Zbigniew, W., Krysanova, V., Wortmann, M., Bolch, T., Merz, B., Duethmann, D., 2015. Analysis of current trends in climate parameters , river discharge and glaciers in the Aksu River basin (Central Asia). Hydroloical Sci. J. 60, 566–590. doi:10.1080/02626667.2014.925559
Kundzewicz, Z.W., Merz, B., Vorogushyn, S., Hartmann, H., Duethmann, D., Wortmann, M., Su, B., Jiang, T., Krysanova, V., 2015. Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin. Hydrol. Sci. J. 60, 501–516. doi:10.1007/s12665-014-3137-5
Kundzewicz, Z.W., Robson, a J., 2004. Change detection in hydrological records - a review of the methodology. Hydrol. Sci. Journal-journal Des Sci. Hydrol. 49, 7–19. doi:10.1623/hysj.49.1.7.53993
Kutuzov, S., Shahgedanova, M., 2009. Glacier retreat and climatic variability in the eastern Terskey – Alatoo , inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Glob. Planet. Change 69, 59–70. doi:10.1016/j.gloplacha.2009.07.001
Le Coz, J., 2012. A literature review of methods for estimating the uncertainty associated with stage-discharge relations. WMO, Lyon, Fr. 1–21.
Liljedahl, A.K., Gädeke, A., O’Neel, S., Gatesman, T.A., Douglas, T.A., 2017. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885. doi:10.1002/2017GL073834
Lutz, A.F., Immerzeel, W.W., Gobiet, A., Pellicciotti, F., Bierkens, M.F.P., 2013. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrol. Earth Syst. Sci. 17, 3661–3677. doi:10.5194/hess-17-3661-2013
Mannig, B., Müller, M., Starke, E., Merkenschlager, C., Mao, W., Zhi, X., Podzun, R., Jacob, D., Paeth, H., 2013. Dynamical downscaling of climate change in Central Asia. Glob. Planet. Change 110, 26–39. doi:10.1016/j.gloplacha.2013.05.008
Marchenko, S.S., Gorbunov, A.P., Romanovsky, V.E., 2007. Permafrost warming in the Tien Shan Mountains, Central Asia. Glob. Planet. Change 56, 311–327. doi:10.1016/j.gloplacha.2006.07.023
Micklin, P., 2007. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72. doi:10.1146/annurev.earth.35.031306.140120
Narama, C., Kääb, A., Duishonakunov, M., Abdrakhmatov, K., 2010. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Change 71, 42–54. doi:10.1016/j.gloplacha.2009.08.002
Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., Stephenson, D.B., 2005. Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Clim. 18, 1411–1422. doi:10.1175/JCLI3352.1
Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D., Miller, J.R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S.N., Yang, D.Q., 2015. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430. doi:10.1038/nclimate2563
Pieczonka, T., Bolch, T., 2015. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Change 128, 1–13. doi:10.1016/j.gloplacha.2014.11.014
Piven, E.N., 2011. Surface renewable water resources of the Lake Balkhash basin. Vopr. Geogr. i Geoekologii (Issues Geogr. Geoecology) 4, 27–36.
Reyer, P.O.C., Otto, I.M., Adams, S., Albrecht, T., Baarsch, F., Cartsburg, M., Coumou, D., Eden, A., Ludi, E., Marcus, R., Mengel, M., Mosello, B., Robinson, A., Schleussner, C.-F., Serdeczny, O., Stagl, J., 2015. Climate change impacts in Central Asia and their implications for development. Reg. Environ. Chang. 15, 1–12. doi:10.1007/s10113-015-0893-z
Schiemann, R., Lüthi, D., Vidale, P.L., Schär, C., 2008. The precipitation climate of Central Asia – intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol. 28, 295–314. doi:10.1002/joc.1532
Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379. doi:10.2307/2285891
Severskiy, I., Vilesov, E., Armstrong, R., Kokarev, A., Kogutenko, L., Usmanova, Z., 2016. Changes in Glaciation of the Balkhash - Alakol basin over the past decades. Ann. Glaciol. 57, 382–394. doi:10.3189/2016AoG71A575
Severskiy, I.V., 2007. The observed and projected changes in snow pack and glacierization in the zone of runoff formation and their potential impacts on water resources in Central Asia, in: Severskiy, I.V. (Ed.), Snezhno-Ledovye i Vodnye Resursy Vysokih Gor Azii (Snow - Ice and Water Resouces in High Asia). UNESCO, Almaty, pp. 180–205.
Shahgedanova, M., 2002. Climate at present and in the historical past, in: Shahgedanova, M. (Ed.), The Physical Geography of Northern Eurasia. Oxford University Press, Oxford, pp. 70–102.
Shahgedanova, M., Afzal, M., Usmanova, Z., Kapitsa, V., Mayr, E., Hagg, W., Severskiy, I. Zhumabayev, D., 2016. Impacts of climate change on river discharge in the Northern Tien Shan: Results from long-term observations and modelling, in: Medeu, A.R. (Ed.), Water Resources of Central Asia and Their Use. Institute of Geography, Almaty, pp. 248–258.
Siegfried, T., Bernauer, T., Guiennet, R., Sellars, S., Robertson, A.W., Mankin, J., Andrey, P.B., 2011. Will climate change exacerbate water stress in Central Asia ? doi:10.1007/s10584-011-0253-z
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., Beniston, M., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2, 725–731. doi:10.1038/nclimate1592
Unger-Shayesteh, K., Vorogushyn, S., Farinotti, D., Gafurov, A., Duethmann, D., Mandychev, A., Merz, B., 2013. What do we know about past changes in the water cycle of Central Asian headwaters ? A review. Glob. Planet. Change 110, 4–25. doi:10.1016/j.gloplacha.2013.02.004
Vilesov, E.N., Morozova, V.I., Severskiy, I.V., 2013. Oledenenie Djungarskogo (Jetisu) Alatau: Proshloe, Nastoyashee, Budushee (Glaciation of the Djungarsky (Jetisu) Alatau: Past, Present, Future). KazNU Press, Almaty.
Viviroli, D., Weingartner, R., 2004. The hydrological significance of mountains: from regional to global scale. Hydrol. Earth Syst. Sci. 8, 1017–1030. doi:10.5194/hess-8-1017-2004
Whitfield, P.H., 2013. Is ‘Centre of Volume’ a robust indicator of changes in snowmelt timing? Hydrol. Process. 27, 2691–2698. doi:10.1002/hyp.9817
Whitfield, P.H., Burn, D.H., Hannaford, J., Higgins, H., Glenn, A., Marsh, T., Looser, U., Hodgkins, G.A., 2012. Reference hydrologic networks I . The status and potential future directions of national reference hydrologic networks for detecting trends. Hydrol. Sci. J. 6667, 37–41. doi:10.1080/02626667.2012.728706
Wilby, R.L., 2006. When and where might climate change be detectable in UK river flows? Geophys. Res. Lett. 33, 1–5. doi:10.1029/2006GL027552
Yang, D., Kane, D.L., Hinzman, L.D., Zhang, X., Zhang, T., Ye, H., 2002. Siberian Lena River hydrologic regime and recent change. J. Geophys. Res. Atmos. 107, 1–10. doi:10.1029/2002JD002542
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., Chen, Y., 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Change 112, 79–91. doi:10.1016/j.gloplacha.2013.12.001
Yue, S., Pilon, P., Phinney, B., Cavadias, G., 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 16, 1807–1829. doi:10.1002/hyp.1095