Accessibility navigation


Change in Emiliania huxleyi virus assemblage diversity but not in host genetic composition during an ocean acidification mesocosm experiment

Highfield, A., Joint, I., Gilbert, J., Crawfurd, K. and Schroeder, D. C. (2017) Change in Emiliania huxleyi virus assemblage diversity but not in host genetic composition during an ocean acidification mesocosm experiment. Viruses, 9 (3). 41. ISSN 1999-4915

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.3390/v9030041

Abstract/Summary

Effects of elevated pCO2 on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO2 to 760 ppmv whilst the other three enclosures were bubbled with air at ambient pCO2; phytoplankton growth was initiated by the addition of nitrate and phosphate. E. huxleyi was the dominant coccolithophore in all enclosures, but no difference in genetic diversity, based on DGGE analysis using primers specific to the calcium binding protein gene (gpa) were detected in any of the treatments. Chlorophyll concentrations and primary production were lower in the three elevated pCO2 treatments than in the ambient treatments. However, although coccolithophores numbers were reduced in two of the high-pCO2 treatments; in the third, there was no suppression of coccolithophores numbers, which were very similar to the three ambient treatments. In contrast, there was considerable variation in genetic diversity in the EhVs, as determined by analysis of the major capsid protein (mcp) gene. EhV diversity was much lower in the high-pCO2 treatment enclosure that did not show inhibition of E. huxleyi growth. Since virus infection is generally implicated as a major factor in terminating phytoplankton blooms, it is suggested that no study of the effect of ocean acidification in phytoplankton can be complete if it does not include an assessment of viruses.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology
ID Code:79445
Publisher:MDPI

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation