Accessibility navigation


Convective initiation and storm life‐cycles in convection‐permitting simulations of the Met Office Unified Model over South Africa

Keat, W. J., Stein, T. H. M., Phaduli, E., Landman, S., Becker, E., Bopape, M.-J. M., Hanley, K. E., Lean, H. W. and Webster, S. (2019) Convective initiation and storm life‐cycles in convection‐permitting simulations of the Met Office Unified Model over South Africa. Quarterly Journal of the Royal Meteorological Society, 145 (721). pp. 1323-1336. ISSN 1477-870X

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

7MB
[img] Text - Accepted Version
· Restricted to Repository staff only

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/qj.3487

Abstract/Summary

Convective initiation is a challenge for convection‐permitting models due to its sensitivity to sub‐km processes. We evaluate the representation of convective storms and their initiation over South Africa during four summer months in Met Office Unified Model simulations at 1.5‐km horizontal grid length. Storm size distributions from the model compare well against radar observations, but rainfall in the model is predominantly produced by large storms (50 km in diameter or larger) in the evening, whereas radar observations show most rainfall occurs throughout the afternoon, from storms 10‐50 km in diameter. In all months, modelled maximum number of storm initiations occurs at least 2 hours prior to the radar‐observed maximum. However, the diurnal cycle of rainfall compares well between model and observations, suggesting the numerous storm initiations in the simulations do not produce much rainfall. Modelled storms are generally less intense than in the radar observations, especially in early summer. In February, when tropical influences dominate, the simulated storms are of similar intensity to observed storms. Simulated storms tend to reach their peak intensity in the first 15 minutes after initiation, then gradually become less intense as they grow. In radar observations, storms reach their peak intensity 15‐30 minutes into their life cycle, stay intense as they grow larger, then gradually weaken after they have reached their maximum diameter. Two November case studies of severe convection are analysed in detail. Higher resolution grid length initiates convection slightly earlier (300 m cf. 1.5 km) with the same science settings. Two 1.5‐km simulations that apply more sub‐grid mixing have delayed convective initiation. Analysis of soundings indicates little difference in convective indices, suggesting that differences in convection may be attributed to choices in sub‐grid mixing parameters.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:82065
Publisher:Royal Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation