Argaín, J. L. (2003) Numerical Modelling of Atmospheric Flow: Orographic and Boundary Layer Effects. Ph.D. thesis, University of Algarve, Faro, Portugal.
Argaín, J. L.,Miranda, P. M. A. and Teixeira, M. A. C. (2009) Estimation of the friction velocity in stably stratified boundary-layer flows over hills. Bound. Layer Meteor., 130, 15–28.
Argaín, J. L., Teixeira, M. A. C. and Miranda, P. M. A. (2017) Estimation of surface-layer scaling parameters in the unstable boundary layer: implications for orographic flow speed-up. Bound. Layer Meteor., 165, 145–160.
Bacmeister, J. T. and Pierrehumbert, R. T. (1988) On high-drag states of nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45, 63–80.
Booker, J. R. and Bretherton, F. P. (1967) The critical layer for internal gravitywaves in a shear flow. J. Fluid Mech., 27, 513–539.
Breeding, R. J. (1971) A non-linear investigation of critical levels for internal atmospheric gravity waves. J. Fluid Mech., 50, 545–563.
Clark, T. L. and Peltier, W. R. (1984) Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122–3134.
Damiens, F., Lott, F., Millet, C. and Plougonven, R. (2018) An adiabatic foehn mechanism. Quart. J. Roy. Meteor. Soc., 144, 1369–1381.
Eliassen, A. and Palm, E. (1960) On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1–23.
Grubišic, V. and Smolarkiewicz, P. K. (1997) The effect of critical levels on 3d orographic flows: linear regime. J. Atmos. Sci., 54, 1943–1960.
Guarino, M.-V. and Teixeira, M. A. C. (2017) Non-hydrostatic effects on mountain wave breaking in directional shear flows. Quart. J. Roy. Meteor. Soc., 143, 3291–3297.
Guarino, M.-V., Teixeira, M. A. C. and Ambaum, M. H. P. (2016) Turbulence generation by mountain wave breaking in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 142, 2715–2726.
Guarino, M.-V., Teixeira, M. A. C., Keller, T. L. and Sharman, R. D. (2018) Mountain wave turbulence in the presence of directional wind shear over the rocky mountains. J. Atmos. Sci., 75, 1285–1305.
Kim, Y.-J. and Doyle, J. D. (2005) Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 1893–1921.
Lott, F. (2007) The reflection of a stationary gravity wave by a viscous boundary layer. J. Atmos. Sci., 64, 3363–3371.
Lott, F. (2016) A new theory for downslope windstorms and trapped mountain waves. J. Atmos. Sci., 73, 3585–3597.
Lott, F. and Miller, M. J. (1997) A new subgrid-scale orographic drag parametrization: its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101–127.
Miles, J. W. and Huppert, H. E. (1969) Lee waves in a stratified flow. part 4. perturbation approximation. J. Fluid Mech., 35, 497–525.
Miranda, P. M. A. and James, I. N. (1992) Non-linear three dimensional effects on the wave drag: splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081.
Miranda, P. M. A. and Valente, M. A. (1997) Critical level resonance in three-dimensional flow past isolated mountains. J. Atmos. Sci., 54, 1574–1588.
Ólafsson, H. and Bougeault, P. (1996) Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci., 53, 2465–2489.
Palmer, T. N., Shutts, G. J. and Swinbank, R. (1986) Alleviation of a systematicwesterly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.
Peltier,W. R. and Clark, T. L. (1979) The evolution and stability of finite-amplitude mountain waves. part ii: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 1498–1529.
Phillips, D. S. (1984) Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J. Atmos. Sci., 41, 1073–1084.
Scinocca, J. F. and Peltier, W. R. (1991) On the richardson number dependence of nonlinear critical-layer flow over localized topography. J. Atmos. Sci., 48, 1560–1572.
Smith, R. B. (1985) On severe downslope winds. J. Atmos. Sci., 42, 2597–2603.
Smith (1986) Further development of a theory of lee cyclogenesis. J. Atmos. Sci., 43, 1582–1602.
Teixeira, M. A. C. (2014) The physics of orographic gravity wave drag. Front. Phys. - Atmos. Sci., 2, 43.
Teixeira, M. A. C., Argaín, J. L. and Miranda, P. M. A. (2012) The importance of friction in mountain wave drag amplification by Scorer parameter resonance. Quart. J. Roy. Meteor. Soc., 138, 1325–1337.
Teixeira, M. A. C., Argain, J. L. and Miranda, P. M. A. (2013a) Drag produced by trapped lee waves and propagating mountain and propagating mountain waves in a two-layer
atmosphere. Quart. J. Roy. Meteor. Soc., 139, 964–981.
Teixeira, M. A. C., Argain, J. L. and Miranda, P. M. A. (2013b) Orographic drag associated with lee waves trapped at an inversion. J. Atmos. Sci., 70, 2930–2947.
Teixeira, M. A. C. and Miranda, P. M. A. (2004) The effect of wind shear and curvature on the gravity wave drag produced by a ridge. J. Atmos. Sci., 61, 2638–2643.
Teixeira, M. A. C. and Miranda, P. M. A. (2006) A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains. Quart. J. Roy.Meteor. Soc., 132, 2439–2458.
Teixeira, M. A. C. and Miranda, P. M. A. (2009) On the momentum fluxes associated with mountain waves in directionally sheared flows. J. Atmos. Sci., 66, 3419–
3433.
Teixeira, M. A. C. and Miranda, P. M. A. (2017) Drag associated with 3d trapped lee waves over an axisymmetric obstacle in two-layer atmospheres. Quart. J. Roy. Meteor. Soc., 143, 3244–3258.
Teixeira, M. A. C., Miranda, P. M. A. and Argaín, J. L. (2008) Mountain waves in two-layer sheared flows: critical level effects, wave reflection and drag enhancement. J. Atmos. Sci., 65, 1912–1926.
Teixeira, M. A. C., Miranda, P. M. A., Argaín, J. L. and Valente, M. A. (2005) Resonant gravity-wave drag enhancement in linear stratified flow over mountains. Quart. J. Roy. Meteor. Soc., 131, 1795–1814.
Teixeira, M. A. C. and Yu, C. L. (2014) The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. Eur. J. Mech. B - Fluids, 47, 16-31.
Wang, T.-A. and Lin, Y.-L. (1999)Wave ducting in a stratified shear flow over two-dimensional mountains. part i: general linear criteria. J. Atmos. Sci., 56, 412–436.
Xu, X., Shu, S. andWang, Y. (2017) Another look on the structure of mountain waves: a spectral perspective. Atmos. Res., 191, 156–163.
Xu, X., Wang, Y. and Xue, M. (2012) Momentum flux and flux divergence of gravity waves in directional shear flows over
three-dimensional mountains. J. Atmos. Sci., 69, 3733–3744.
Xu, X., Xue, M. andWang, Y. (2013) Gravitywave momentum flux in directional shear flows over three-dimensional mountains:
Linear and nonlinear numerical solutions as compared to linear analytical solutions. J. Geophys. Res., 118, 7670–7681.
Yu, C.-L. and Teixeira, M. A. C. (2015) Impact of non-hydrostatic effects and trapped lee waves on mountain-wave drag in directionally sheared flows. Quart. J. Roy. Meteor. Soc., 141, 1572–1585.