Adamson, D. S., Belcher, S. E., Hoskins, B. J., & Plant, R. S. (2006). Boundary1145
layer friction in midlatitude cyclones. Q. J. R. Meteorol. Soc., 132 , 101-124.
1146 Arakawa, A., Jung, J.-H., & Wu, C.-M. (2011). Toward uni�cation of the multiscale
1147 modeling of the atmosphere. Atmos. Chem. Phys., 11 (8), 3731{3742.
1148 Arakawa, A., & Wu, C.-M. (2013). A uni�ed representation of deep moist convection
1149 in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70 (7), 1977-
1150 1992.
1151 Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M., Horvath, K., . . .
1152 Schneider, S. (2012, 02). High resolution modelling in complex terrain. Report
{29{
manuscript submitted to JGR
1153 on the HiRCoT 2012 Workshop, Vienna.
1154 Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M., Horvath, K., . . .
1155 Schneider, S. (2014). Issues in high-resolution atmospheric modeling in
1156 complex terrain - the HiRCoT workshop. Croat. Meteor. J., 47 , 311.
1157 Basu, S., Vinuesa, J.-F., & Swift, A. (2008). Dynamic LES modeling of a diurnal cy1158
cle. J. Appl. Meteorol. Climatol., 47 , 1156-1174.
1159 Beare, R. J. (2014). A length scale de�ning partially-resolved boundary-layer turbu1160
lence simulations. Boundary-Layer Meteorol., 151 , 39-55.
1161 Beljaars, A. C. M., Brown, A. R., & Wood, N. (2004). A new parametrization of
1162 turbulent orographic form drag. Q. J. R. Meteorol. Soc., 130 (599), 1327{1347.
1163 Bengtsson, L., Tijm, S., Vana, F., & Svensson, G. (2012). Impact of
ow-dependent
1164 horizontal di�usion on resolved convection in AROME. J. Appl. Meteorol. Cli-
1165 matol., 51 (1), 54-67.
1166 Bhattacharya, R., & Stevens, B. (2016). A two turbulence kinetic energy model as
1167 a scale adaptive approach to modeling the planetary boundary layer. J. Adv.
1168 Model. Earth Syst., 8:1 , 224-243.
1169 Bony, S., Stevens, B., Ament, F., Bigorre, S., Chazette, P., Crewell, S., . . . Wirth,
1170 M. (2017). EUREC4A: A �eld campaign to elucidate the couplings between
1171 clouds, convection and circulation. Surveys in Geophysics, 38 , 1529{1568.
1172 Boutle, I. A., Belcher, S. E., & Plant, R. S. (2015). Friction in mid-latitude cyclones:
1173 an Ekman-PV mechanism. Atmos. Sci. Lett., 16 , 103-109.
1174 Boutle, I. A., Eyre, J. E. J., & Lock, A. P. (2014). Seamless stratocumulus simula1175
tion across the turbulent grey zone. Mon. Wea. Rev., 142 , 1655-1668.
1176 Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent Lagrangian
1177 dynamic model for large eddy simulation of complex turbulent
ows. Phys.
1178 Fluids, 17 (2), 025105. doi: 10.1063/1.1839152
1179 Brast, M., Schemann, V., & Neggers, R. A. J. (2018). Investigating the scale1180
adaptivity of a size-�ltered mass
ux parameterization in the gray zone of
1181 shallow cumulus convection. J. Atmos. Sci., 75 , 1195-1214.
1182 Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C.,
1183 Khairoutdinov, M., . . . Stevens, B. (2002). Large-eddy simulation of the
1184 diurnal cycle of shallow cumulus convection over land. Q. J. R. Meteorol. Soc.,
1185 128 , 1075-1093.
1186 Bryan, G. H., & Morrison, H. (2012). Sensitivity of a simulated squall line to hori1187
zontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140 ,
1188 202-225.
1189 Cheinet, S. (2003). A Multiple Mass-Flux Parameterization for the Surface-
1190 Generated Convection. Part I: Dry Plumes. J. Atmos. Sci., 60 , 2313-2327.
1191 Chen, R., & Tomassini, L. (2015). The role of moisture in summertime low-level jet
1192 formation and associated rainfall over the East Asian monsoon region. J. At-
1193 mos. Sci., 72 , 3871-3890.
1194 Ching, J., Rotunno, R., LeMone, M., Martilli, A., Kosovic, B., Jimenez, P. A., &
1195 Dudhia, J. (2014). Convectively induced secondary circulations in �ne-grid
1196 mesoscale numerical weather prediction models. Mon. Wea. Rev., 142:9 .
1197 Chow, F. K., Street, R. L., Xue, M., & Ferziger, J. H. (2005). Explicit �ltering and
1198 reconstruction turbulence modeling for large-eddy simulation of neutral bound1199
ary layer
ow. J. Atmos. Sci., 62 (7), 2058-2077. doi: 10.1175/JAS3456.1
1200 Clarke, R. H., Dyer, A. J., Reid, D. G., & Troup, A. J. (1971). The Wangara exper1201
iment: Boundary layer data. Division Meteorological Physics Paper, CSIRO,
1202 19 , Australia.
1203 Couvreux, F., Guichard, F., Redelsperger, J.-L., Kiemle, C., Masson, V., Lafore,
1204 J.-P., & Flamant, C. (2005). Water vapour variability within a convective
1205 boundary-layer assessed by large-eddy simulations and IHOP2002 observations.
1206 Q. J. R. Meteorol. Soc., 131 , 2665-2693.
1207 Couvreux, F., Hourdin, F., & Rio, C. (2010). Resolved versus parametrized
{30{
manuscript submitted to JGR
1208 boundary-layer plumes. Part I: A parametrization-oriented conditional sam1209
pling in large-eddy simulations. Boundary-layer Meteorol., 134 (3), 441{458.
1210 Craig, G. C., & Dornbrack, A. (2008). Entrainment in cumulus clouds: What resolu1211
tion is cloud-resolving? J. Atmos. Sci., 65 , 3978-3988.
1212 De Roode, S. R., Duynkerke, P. G., & Jonker, H. J. J. (2004). Large-eddy simula1213
tion : How large is large enough? J. Atmos. Sci., 61 , 403-421.
1214 de Roode, S. R., Frederikse, T., Siebesma, A. P., Ackerman, A. S., Field, P. R., Hill,
1215 A., . . . L.Tomassini (2019). Turbulent transport in the grey zone: A large1216
eddy simulation intercomparison study of the CONSTRAIN cold air outbreak
1217 case. J. Adv. Model. Earth Syst., 11 , 597{623.
1218 Deardor�, J. W. (1972). Theoretical expression for the counter gradient vertical
ux.
1219 J. Geophys. Res., 77 , 5900-5904.
1220 Deardor�, J. W. (1980). Stratocumulus-capped mixed layers derived from a three1221
dimensional model. Boundary-Layer Meteorol., 18 , 495{527.
1222 Dorrestijn, J., Crommelin, D. T., Siebesma, A. P., & Jonker, H. J. J. (2013).
1223 Stochastic parameterization of shallow cumulus convection estimated from
1224 high-resolution model data. Theor. Comp. Fluid Dyn., 27 (1-2), 133-148.
1225 Retrieved from http://dx.doi.org/10.1007/s00162-012-0281-y doi:
1226 10.1007/s00162-012-0281-y
1227 Du�ourg, F., Nuissier, O., Ducrocq, V., Flamant, C., Chazette, P., Delano�e, J., . . .
1228 Bock, O. (2016). O�shore deep convection initiation and maintenance dur1229
ing HyMeX IOP16a heavy precipitation event. Q. J. R. Meteorol. Soc., 142 ,
1230 259274.
1231 Efstathiou, G. A., & Beare, R. J. (2015). Quantifying and improving sub-grid di�u1232
sion in the boundary-layer grey zone. Q. J. R. Meteorol. Soc., 141:693 .
1233 Efstathiou, G. A., Beare, R. J., Osborne, S., & Lock., A. P. (2016). Grey zone sim1234
ulations of the morning convective boundary layer development. J. Geophys.
1235 Res. Atmos., 121:9 .
1236 Efstathiou, G. A., & Plant, R. S. (2019). A dynamic extension of the pragmatic
1237 blending scheme for scale-dependent sub-grid mixing. Q. J. R. Meteorol. Soc.,
1238 1-9.
1239 Efstathiou, G. A., Plant, R. S., & Bopape., M. M. (2018). Simulation of an evolving
1240 convective boundary layer using a scale-dependent dynamic smagorinsky model
1241 at near-gray-zone resolutions. J. Appl. Meteorol. Clim., 57 , 21972214.
1242 Field, P. R., Brozkov, R., Chen, M., Dudhia, J., Lac, C., Hara, T., . . . McTaggart-
1243 Cowan, R. (2017). Exploring the convective grey zone with regional simula1244
tions of a cold air outbreak. Q. J. R. Meteorol. Soc., 143 (707), 2537-2555. doi:
1245 10.1002/qj.3105
1246 Field, P. R., Cotton, R. J., McBeath, K., Lock, A. P., Webster, S., & Allan, R. P.
1247 (2014). Improving a convection-permitting model simulation of a cold air
1248 outbreak. Q. J. R. Meteorol. Soc., 140 , 124-138.
1249 Fiori, E., Parodi, A., & Siccardi, F. (2010). Turbulence closure parameterization and
1250 grid spacing e�ects in simulated supercell storms. J. Atmos. Sci., 67 (12), 3870-
1251 3890.
1252 Goger, B., Rotach, M. W., Gohm, A., Fuhrer, O., Stiperski, I., & Holtslag, A. A. M.
1253 (2018). The impact of three-dimensional e�ects on the simulation of turbulence
1254 kinetic energy in a major Alpine valley. Boundary-Layer Meteorol., 168 (1),
1255 1{27.
1256 Green, B. W., & Zhang, F. (2015). Numerical simulations of Hurricane Katrina
1257 (2005) in the turbulent gray zone. J. Adv. Model. Earth Syst., 7 , 142-161. doi:
1258 10.1002/2014MS000399
1259 Hagelin, S., Auger, L., Brovelli, P., & Dupont, O. (2014). Nowcasting with the
1260 AROME model: First results from the high-resolution AROME airport.
1261 Weath. and Forecasting, 29 , 773-787.
1262 Hanley, K. E., Plant, R. S., Stein, T. H. M., Hogan, R. J., Nicol, J. C., Lean, H. W.,
{31{
manuscript submitted to JGR
1263 . . . Clark, P. A. (2014). Mixing-length controls on high-resolution simula1264
tions of convective storms. Q. J. R. Meteorol. Soc., 141 (686), 272-284. doi:
1265 10.1002/qj.2356
1266 Hatlee, S. C., & Wyngaard, J. C. (2007). Improved sub�lter-scale models from the
1267 HATS �eld data. J. Atmos. Sci., 64 , 1694-1705.
1268 Honnert, R., Couvreux, F., Masson, V., & Lancz, D. (2016). Sampling of the struc1269
ture of turbulence : Implications for parameterizations at sub-kilometric scales.
1270 Boundary-Layer Meteorol., 2:27 , doi: 10.3389/feart.2014.00027.
1271 Honnert, R., & Masson, V. (2014). What is the smallest physically ac1272
ceptable scale for 1d turbulence schemes? Front. Earth Sci., 2:27 , doi:
1273 10.3389/feart.2014.00027.
1274 Honnert, R., Masson, V., & Couvreux, F. (2011). A diagnostic for evaluating the
1275 representation of turbulence in atmospheric models at the kilometric scale. J.
1276 Atmos. Sci., 68 , 3112-3131.
1277 Hourdin, F., Couvreux, F., & Menut, L. (2002). Parameterization of the dry convec1278
tive boundary layer based on a mass
ux representation of thermals. J. Atmos
1279 Sci., 59 , 1105-1122.
1280 Huq, S., De Roo, F., Raasch, S., & Mauder, M. (2014). Vertical grid nesting for
1281 improved surface layer resolution in large-eddy simulation. In 21st symp. on
1282 boundary layers and turbulence.
1283 Ito, J., Hayashi, S., Hashimoto, A., Ohtake, H., Uno, F., Yoshimura, H., . . . Ya1284
mada, Y. (2017). Stalled improvement in a numerical weather prediction
1285 model as horizontal resolution increases to the sub-kilometer scale. SOLA, 13 ,
1286 151-156. doi: 10.2151/sola.2017-028
1287 Ito, J., Niino, H., & Nakanishi, M. (2014). Horizontal turbulent di�usion in a con1288
vective mixed layer. J. Fluid Mech, 758 , 553-564. doi: 10.1017/jfm.2014.545
1289 Ito, J., Niino, H., Nakanishi, M., & Moeng, C.-H. (2015). An extension of Mellor-
1290 Yamada model to the terra incognita zone for dry convective mixed layers in
1291 the free convection regime. Boundary-Layer Meteorol., 157(1), 23-43.
1292 Kealy, J., Efstathiou, G. A., & Beare, R. J. (2019). The onset of resolved boundary1293
layer turbulence at grey-zone resolutions. Boundary-Layer Meteorol., 171 , 31{
1294 52.
1295 Kelly, M., Wyngaard, J. C., & Sullivan, P. P. (2009). Application of a sub�lter-scale
1296
ux model over the ocean using OHATS �eld data. J. Atmos. Sci., 66 (10),
1297 3217{3225.
1298 Khouider, B., Biello, J., & Majda, A. (2010). A stochastic multicloud model for
1299 tropical convection. Commun. Math. Sci., 8 , 187216.
1300 Kitamura, Y. (2015). Estimating dependence of the turbulent length scales on model
1301 resolution based on a priori analysis. J. Atmos. Sci., 72 , 750-762.
1302 Kitamura, Y. (2016). Application of the new turbulence length scale for the terra
1303 incognita range to numerical simulations of a convective boundary layer. J.
1304 Metorol. Soc. Japan, 94 , 491-506.
1305 Kleissl, J., Kumar, V., Meneveau, C., & Parlange, M. B. (2006). Numerical study
1306 of dynamic Smagorinsky models in large-eddy simulation of the atmospheric
1307 boundary layer: Validation in stable and unstable conditions. Water Resources
1308 Res., 42 . doi: 10.1029/2005WR004685
1309 Kober, K., & Craig, G. C. (2016). Physically based stochastic perturbations (PSP)
1310 in the boundary layer to represent uncertainty in convective initiation. J. At-
1311 mos. Sci., 73 , 2893-2911.
1312 Kuettner, J. P. (1974). General description and central program of GATE. Bull.
1313 Amer. Meteorol. Soc., 55 , 712-719.
1314 Kurowski, M., & Teixeira, J. (2018). A scale-adaptive turbulent kinetic energy clo1315
sure for the dry convective boundary layer. J. Atmos. Sci., 75(2), 675-690.
1316 Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., . . .
1317 Wautelet, P. (2018). Overview of the Meso-NH model version 5.4 and its
{32{
manuscript submitted to JGR
1318 applications. Geosci. Model Dev., 11 , 1929{1969.
1319 Lancz, D., Szinta, B., & Honnert, R. (2017). Modi�cation of shallow convection
1320 parametrization in the gray zone in a mesoscale model. Boundary-Layer Mete-
1321 orol..
1322 Lappen, C.-L., & Randall, D. A. (2001). Toward a uni�ed parameteriza1323
tion of the boundary layer and moist convection. Part I: A new type of
1324 mass-
ux model. J. Atmos. Sci., 58 (15), 2021-2036. Retrieved from
1325 https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
1326 doi: 10.1175/1520-0469(2001)058h2021:TAUPOTi2.0.CO;2
1327 Lazeroms, W. M. J., Svensson, G., Bazile, E., Brethouwer, G., Wallin, S., & Jo1328
hansson, A. V. (2016, Oct 01). Study of transitions in the atmospheric
1329 boundary layer using explicit algebraic turbulence models. Boundary-Layer
1330 Meteorol., 161 (1), 19{47. Retrieved from https://doi.org/10.1007/
1331 s10546-016-0194-1 doi: 10.1007/s10546-016-0194-1
1332 Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., & Hal1333
liwell, C. (2008). Characteristics of high-resolution versions of the Met O�ce
1334 Uni�ed Model for forecasting convection over the United Kingdom. Mon. Wea.
1335 Rev., 136 (9), 3408-3424.
1336 LeMone, M. A., Chen, F., Tewari, M., Dudhia, J., Geerts, B., Miao, Q., . . . Gross1337
man, R. L. (2010). Simulating the IHOP 2002 fair-weather CBL with the
1338 WRF-ARW-Noah modeling system. Part II: Structures from a few kilome1339
ters to 100 km across. Mon. Wea. Rev., 138 (3), 745-764. Retrieved from
1340 https://doi.org/10.1175/2009MWR3004.1 doi: 10.1175/2009MWR3004.1
1341 Leoncini, G., Plant, R. S., Gray, S. L., & Clark, P. A. (2010). Perturbation growth
1342 at the convective scale for CSIP IOP18. Q. J. R. Meteorol. Soc., 136 , 653-670.
1343 Leroyer, S., Blair, S., Mailhot, J., & Strachan, I. B. (2011). Microscale nu1344
merical prediction over Montreal with the Canadian external urban mod1345
eling system. J. Appl. Meteorol. Climatol., 50 (12), 2410-2428. doi:
1346 10.1175/JAMC-D-11-013.1
1347 Lilly, D. K. (1967). The representation of small-scale turbulence in numerical sim1348
ulation experiments. Proc. IBM Scienti�c Computing Symp. on Environmental
1349 Sciences, 195.
1350 Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000).
1351 A new boundary layer mixing scheme. Part I : Scheme description and
1352 single-column model tests. Mon. Wea. Rev., 128 (9), 3187-3199. doi:
1353 10.1175/1520-0493(2000)128h3187:ANBLMSi2.0.CO;2
1354 Malavelle, F. F., Haywood, J. M., Field, P. R., Hill, A. A., Abel, S. J., Lock, A. P.,
1355 . . . McBeath, K. (2014). A method to represent subgrid-scale updraft velocity
1356 in kilometer-scale models: Implication for aerosol activation. J. Geophys. Res.
1357 Atmos., 119 (7), 4149{4173. doi: 10.1002/2013JD021218
1358 Martinet, M., Nuissier, O., Du�ourg, F., Ducrocq, V., & Ricard, D. (2017). Fine1359
scale numerical analysis of the sensitivity of the HyMeX IOP16a heavy pre1360
cipitating event to the turbulent mixing-length parametrization. Q. J. R.
1361 Meteorol. Soc., 143 , 31223135. doi: 10.1002/qj.3167
1362 Mason, P. J., & Brown, A. R. (1999). On subgrid models and �lter operations in
1363 large eddy simulations. J. Atmos Sci., 56 , 21012104.
1364 Mason, P. J., & Thomson, D. J. (1992). Stochastic backscatter in large-eddy simula1365
tions of boundary layers. J. Fluid Mech., 242 , 5178.
1366 Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for
1367 geophysical
uid problems. Rev. Geophys., 20 (4), 851{875.
1368 Mirocha, J., Kirkil, G., Bou-Zeid, E., Chow, F. K., & Kosovic, B. (2013). Transition
1369 and equilibration of neutral atmospheric boundary layer
ow in one-way nested
1370 large-eddy simulations using the weather research and forecasting model. Mon.
1371 Wea. Rev., 141 , 918-940.
1372 Mun~oz-Esparza, D., Kosovi�c, B., Mirocha, J., & van Beeck, J. (2014, Dec 01).
{33{
manuscript submitted to JGR
1373 Bridging the transition from mesoscale to microscale turbulence in numerical
1374 weather prediction models. Boundary-Layer Meteorol., 153 (3), 409{440. doi:
1375 10.1007/s10546-014-9956-9
1376 Nakanishi, M., & Nino, H. (2009). Development of an improved turbulence closure
1377 model for the atmospheric boundary layer. J. Meteorol. Soc. Japan, 87 (5),
1378 895-912. doi: 10.2151/jmsj.87.895
1379 Neggers, R. A. J., Griewank, P. J., & Heus, T. (2019). Power-law scaling in
1380 the internal variability of cumulus cloud size distributions due to subsam1381
pling and spatial organization. J. Atmos. Sci., 76 (6), 1489-1503. doi:
1382 10.1175/JAS-D-18-0194.1
1383 Neggers, R. A. J., Koehler, M., & Beljaars, A. A. M. (2009). A dual mass
ux
1384 framework for boundary-layer convection. Part I: Transport. J. Atmos. Sci.,
1385 66 , 1465-1487. doi: 10.1175/2008JAS2635.1
1386 Neggers, R. A. J., Siebesma, A. P., & Jonker, H. J. J. (2002). A multiparcel model
1387 for shallow cumulus convection. J. Atmos. Sci., 59 , 1655-1668.
1388 O'Neill, J. J., Cai, X.-M., & Kinnersley, R. (2015). A generalised stochastic
1389 backscatter model: large-eddy simulation of the neutral surface layer. Q. J.
1390 R. Meteorol. Soc., 141 , 2617-2629.
1391 Orlanski, I. (1975). A rational subdivison of scales for atmospheric processes. Bull.
1392 Amer. Meteorol. Soc., 56 , 527-530.
1393 Palmer, T. (2001). A nonlinear dynamical perspective on model error: A pro1394
posal for non-local stochastic-dynamic parametrization in weather and climate
1395 prediction models. Q. J. R. Meteorol. Soc., 127 , 279-304.
1396 Palmer, T. (2012). Towards the probabilistic Earth-system simulator: A vision
1397 for the future of climate and weather prediction. Q. J. R. Meteorol. Soc., 138 ,
1398 841-861.
1399 Park, S. (2014). A Uni�ed Convection Scheme (UNICON). Part I: Formulation. J.
1400 Atmos. Sci., 71 , 3902-3930. doi: 10.1175/JAS-D-13-0233.1
1401 Pergaud, J., Masson, V., Malardel, S., & Couvreux, F. (2009). A parametrisation of
1402 dry thermals and shallow cumuli for mesoscale numerical weather prediction.
1403 Boundary-Layer Meteorol., 132 , 83-106.
1404 Petch, J. C., Brown, A. R., & Gray, M. E. B. (2002). The impact of horizontal reso1405
lution on the simulations of convective development over land. Q. J. R. Meteo-
1406 rol. Soc., 128 , 2031-2044,doi:10.1256/003590002320603511.
1407 Plant, R. S., Bengtsson, L., & Whitall, M. A. (2015). Stochastic aspects of convec1408
tive parameterization. In R. S. Plant & J.-I. Yano (Eds.), Parameterization
1409 of atmospheric convection. Volume 2: Current issues and new theories (pp.
1410 135{172). World Scienti�c, Imperial College Press.
1411 Plant, R. S., & Craig, G. C. (2008). A Stochastic Parameterization for Deep Convec1412
tion Based on Equilibrium Statistics. J. Atmos. Sci., 65 , 87-105. doi: 10.1175/
1413 2007JAS2263.1
1414 Ramachandran, S., Tandon, A., & Mahadevan, A. (2013). E�ect of subgrid-scale
1415 mixing on the evolution of forced submesoscale instabilities. Ocean Modelling,
1416 66 , 45-63.
1417 Ramachandran, S., & Wyngaard, J. (2011). Sub�lter-scale modelling using transport
1418 equations: Large-eddy simulation of the moderately convective atmospheric
1419 boundary layer. Boundary-Layer Meteorol , 139 , 1-35.
1420 Raynaud, L., & Bouttier, F. (2017). The impact of horizontal resolution and en1421
semble size for convective-scale probabilistic forecasts. Q. J. R. Meteorol. Soc.,
1422 143 , 3037-3047.
1423 Redelsperger, J. L., Thorncroft, C. D., A. Diedhiou, T. L., Parker, D. J., & Polcher,
1424 J. (2006). African monsoon multidisciplinary analysis an international research
1425 project and �eld campaign. Bull. Amer. Meteorol. Soc., 87 (12), 1735-1746.
1426 Ricard, D., Lac, C., Legrand, R., Mary, A., & Riette, S. (2013). Kinetic energy spec1427
tra characteristics of two convection-permitting limited-area models AROME
{34{
manuscript submitted to JGR
1428 and MesoNH. Q. J. R. Meteorol. Soc., 139 , 1327-1341.
1429 Rio, C., Hourdin, F., Couvreux, F., & Jam, A. (2010). Resolved versus parametrized
1430 boundary-layer plumes. Part II : Continuous formulations of mixing rates for
1431 mass-
ux schemes. Boundary-Layer Meteorol , 135 , 469-483.
1432 Roberts, N. M., & Lean, H. W. (2008). Scale-selective veri�cation of rainfall accu1433
mulations from high-resolution forecasts of convective events. Mon. Wea. Rev.,
1434 136 (1), 78-97. doi: 10.1175/2007MWR2123.1
1435 Sakradzija, M., Seifert, A., & Dipankar, A. (2016). A stochastic scale-aware param1436
eterization of shallow cumulus convection across the convective gray zone. J.
1437 Adv. Model. Earth Syst., 8 (2), 786{812. Retrieved from http://dx.doi.org/
1438 10.1002/2016MS000634 doi: 10.1002/2016MS000634
1439 Sakradzija, M., Seifert, A., & Heus, T. (2014). Fluctuations in a quasi-stationary
1440 shallow cumulus cloud ensemble. Nonlin. Processes Geophys. Discuss., 1 , 1223-
1441 1282. doi: 10.5194/npgd-1-1223-2014
1442 Seity, Y., Brousseau, P., Malardelle, S., Hello, G., Bouttier, F., Lac, C., & Masson,
1443 V. (2011). The AROME-France convective scale operational model. Mon.
1444 Wea. Rev., 139 , 976-991.
1445 Shin, H. H., & Dudhia, J. (2016). Evaluation of PBL parameterizations
1446 in WRF at subkilometer grid spacings: Turbulence statistics in the dry
1447 convective boundary layer. Mon. Wea. Rev., 144 (3), 1161-1177. doi:
1448 10.1175/MWR-D-15-0208.1
1449 Shin, H. H., & Hong, S. (2013). Analysis on resolved and parameterized vertical
1450 transports in the convective boundary layers at the gray-zone resolution. J. At-
1451 mos. Sci., 70 , 3248-3261.
1452 Shin, H. H., & Hong, S. (2015). Representation of the subgrid-scale turbulent trans1453
port in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev.,
1454 143 , 250-271.
1455 Siebesma, A. P., & Cuijpers, J. W. M. (1995). Evaluation of parametric assumptions
1456 for shallow cumulus convection. J. Atmos. Sci., 52 (6), 650{666.
1457 Siebesma, A. P., Soares, P. M. M., & Teixeira, J. (2007). A combined eddy1458
di�usivity mass-
ux approach for the convective boundary layer. J. Atmos.
1459 Sci., 64 , 1230-1248.
1460 Siebesma, P., JAKOB, C., LENDERINK, G., NEGGERS, R. A. J., TEIXEIRA,
1461 J., van MEIJGAARD, E., . . . SEVERIJNS, C. (2004). Cloud representation
1462 in general-circulation models over the northern Paci�c ocean: A EUROCS
1463 intercomparison study. Q. J. R. Meteorol. Soc., 130 , 3245-3267.
1464 Simon, J. S., Zhou, B., Mirocha, J. D., & Chow, F. K. (2019). Explicit �lter1465
ing and reconstruction to reduce grid dependence in convective boundary
1466 layer simulations using WRF-LES. Mon. Wea. Rev., 147 , 1805{1821. doi:
1467 10.1175/MWR-D-18-0205.1
1468 Skamarock, W. C. (2004). Evaluating mesoscale NWP models using kinetic energy
1469 spectra. Mon. Wea. Rev., 132 , 3019-3032.
1470 Smagorinsky, J. J. (1967). General circulation experiments with the primitive equa1471
tions. Mon. Wea. Rev., 91 (3), 99-164. doi: 10.1175/1520-0493(1963)091h0099:
1472 GCEWTPi2.3.CO;2
1473 Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K. E., Lean,
1474 H. W., . . . Plant, R. S. (2015). The DYMECS project: A statistical approach
1475 for the evaluation of convective storms in high-resolution NWP models. Bull.
1476 Amer. Meteorol. Soc., 96 , 939-951.
1477 Stirling, A. J., & Petch, J. C. (2004). The impacts of spatial variability on the devel1478
opment of convection. Q. J. R. Meteorol. Soc., 130 , 3189-3206.
1479 Stoelinga, M. T. (1996). A potential vorticity-based study on the role of diabatic
1480 heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea.
1481 Rev., 124 , 849-874.
1482 Stull, R. B. (1984). Transilient turbulence theory. Part I : The concept of eddy-
{35{
manuscript submitted to JGR
1483 mixing across �nite distances. J. Atmos. Sci., 41 , 3351-3366.
1484 Stull, R. B. (1988). An introduction to boundary layer meteorology. Kluwer Acaemic
1485 Publishers.
1486 Sullivan, P. P., Horst, T. W., Lenschow, D. H., Moeng, C.-H., & Weil, J. C. (2003).
1487 Structure of sub�lter-scale
uxes in the atmospheric surface layer with applica1488
tion to large-eddy simulation modelling. J. Fluid Mech, 482 , 101{139.
1489 Sullivan, P. P., McWilliams, J. C., & Moeng, C.-H. (1996). A grid nesting method
1490 for large-eddy simulation of planetary boundary-layer
ows. Boundary-Layer
1491 Meteorol., 80 (1-2), 167-202.
1492 Sullivan, P. P., & Patton, E. G. (2011). The e�ect of mesh resolution on convective
1493 boundary layer statistics and structures generated by large-eddy simulation. J.
1494 Atmos. Sci., 68 (10), 2395-2415. doi: 10.1175/JAS-D-10-05010.1
1495 Suselj, K., Hogan, T. F., & Teixeira, J. (2014). Implementation of a stochas1496
tic eddy-di�usivity/mass-
ux parameterization into the Navy Global
1497 Environmental Model. Weath. and Forecasting, 29 , 1374-1390. doi:
1498 10.1175/WAF-D-14-00043.1
1499 Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., & Teixeira, J. (2018).
1500 An extended eddy-di�usivity mass-
ux scheme for uni�ed representation of
1501 subgrid-scale turbulence and convection. J. Adv. Model. Earth Syst., 10 ,
1502 770-800.
1503 Teixeira, J., & Cheinet, S. (2004). A simple mixing length formulation for the
1504 eddy-di�usivity parameterization of dry convection. Boundary-Layer Meteorol.,
1505 110 (3), 435{453.
1506 Lafore, J., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., . . . Vila-
1507 Guerau de Arellano, J. (1998). The M�eso-NH atmospheric simulation system.
1508 Part I : Adiabatic formulation and control simulation. Annales Geophysics,
1509 16 , 90-109.
1510 Thuburn, J., Weller, H., Vallis, G. K., Beare, R. J., & Whitall, M. (2018). A
1511 framework for convection and boundary layer parameterization derived from
1512 conditional �ltering. J. Atmos. Sci., 75 (3), 965-981. Retrieved from https://
1513 doi.org/10.1175/JAS-D-17-0130.1 doi: 10.1175/JAS-D-17-0130.1
1514 Tomassini, L., Field, P. R., Honnert, R., Malardel, S., McTaggart-Cowan, R., Saitou,
1515 K., . . . Seifert, A. (2016). The grey zone cold air outbreak global model inter1516
comparison : A cross evaluation using large-eddy simulations. J. Adv. Model.
1517 Earth Syst., 9 , 39-64, doi:10.1002/2016MS000822.
1518 Tomassini, L., Parker, D. J., Stirling, A., Bain, C., Senior, C., & Milton, S. (2017).
1519 The interaction between moist diabatic processes and the atmospheric circula1520
tion in African Easterly Wave propagation. Q. J. R. Meteorol. Soc..
1521 Verrelle, A., Ricard, D., & Lac, C. (2015). Sensitivity of high-resolution ideal1522
ized simulations of thunderstorms to horizontal resolution and turbulence
1523 parametrization. Q. J. R. Meteorol. Soc., 141 , 433{448.
1524 Verrelle, A., Ricard, D., & Lac, C. (2017). Evaluation and improvement of turbu1525
lence parameterization inside deep convective clouds at kilometer-scale resolu1526
tion. Mon. Wea. Rev., 145 (10), 3947-3967. doi: 10.1175/MWR-D-16-0404.1
1527 Wagner, J. S., Gohm, A., & Rotach, M. W. (2014). The impact of horizontal model
1528 grid resolution on the boundary layer structure over an idealized valley. Mon.
1529 Wea. Rev., 142 (9), 3446-3465.
1530 Wagner, T. M., & Graf, H.-F. (2010). An ensemble cumulus convection parameter1531
ization with explicit cloud treatment. J. Atmos. Sci., 67 , 3854-3869. doi: 10
1532 .1175/2010JAS3485.1
1533 Warren, R. A., Kirshbaum, D. J., Plant, R. S., & Lean, H. W. (2014). A Boscastle1534
type quasi-stationary convective system over the UK southwest peninsula. Q.
1535 J. R. Meteorol. Soc., 140 (678), 240-257.
1536 Weckwerth, T. M., Parsons, D. B., Koch, S. E., Moore, J. A., LeMone, M. A., De1537
moz, B. B., . . . Feltz, W. F. (2004). An overview of the International H2O
{36{
manuscript submitted to JGR
1538 Project (IHOP 2002) and some preliminary highlights. Bull. Amer. Meteor.
1539 Soc., 85 (2), 253-278. doi: 10.1175/BAMS-85-2-253
1540 Weinbrecht, S., & Mason, P. J. (2008). Stochastic backscatter for cloud-resolving
1541 models. Part I: Implementation and testing in a dry convective boundary layer.
1542 J. Atmos. Sci., 65 , 123-139.
1543 Wyngaard, J. C. (2004). Toward numerical modelling in the 'Terra Incognita'. J.
1544 Atmos. Sci., 61 , 1816-1826.
1545 Xie, Z.-T., & Castro, I. P. (2008). E�cient generation of in
ow conditions for large
1546 eddy simulation of street-scale
ows. Flow Turbulence Combust., 81 , 449-470.
1547 Young, G. S., Kristovich, D. A. R., Hjelmfelt, M. R., & Foster, R. C. (2002). Rolls,
1548 streets, waves, and more: A review of quasi-two-dimensional structures in the
1549 atmospheric boundary layer. Bull. Amer. Meteorol. Soc., 83 (7), 997{1002.
1550 Zhang, X., Bao, J.-W., Chen, B., & Grell, E. D. (2018). A three-dimensional scale1551
adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon.
1552 Wea. Rev., 146 (7), 2023-2045. doi: 10.1175/MWR-D-17-0356.1
1553 Zhou, B., Simon, J. S., & Chow, F. K. (2014). The convective boundary layer in the
1554 terra incognita. J. Atmos. Sci., 71 (7), 2545-2563. doi: 10.1175/JAS-D-13-0356
1555 .1
1556 Zhou, B., Xue, M., & Zhu, K. (2017). A grid-re�nement-based approach for mod1557
eling the convective boundary layer in the gray zone: A pilot study. J. Atmos.
1558 Sci., 74 (11), 3497-3513. doi: 10.1175/JAS-D-16-0376.1
1559 Zhou, B., Xue, M., & Zhu, K. (2018). A grid-re�nement-based approach for model1560
ing the convective boundary layer in the gray zone: Algorithm implementation
1561 and testing. J. Atmos. Sci., 75 (4), 1143-1161. doi: 10.1175/JAS-D-17-0346.1
{37{