Accessibility navigation


The different stratospheric influence on cold-extremes in Eurasia and North America

Kretschmer, M. ORCID: https://orcid.org/0000-0002-2756-9526, Cohen, J., Matthias, V., Runge, J. and Coumou, D. (2018) The different stratospheric influence on cold-extremes in Eurasia and North America. npj Climate and Atmospheric Science, 1 (1). ISSN 2397-3722

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/s41612-018-0054-4

Abstract/Summary

The stratospheric polar vortex can influence the tropospheric circulation and thereby winter weather in the mid-latitudes. Weak vortex states, often associated with sudden stratospheric warmings (SSW), have been shown to increase the risk of cold-spells especially over Eurasia, but its role for North American winters is less clear. Using cluster analysis, we show that there are two dominant patterns of increased polar cap heights in the lower stratosphere. Both patterns represent a weak polar vortex but they are associated with different wave mechanisms and different regional tropospheric impacts. The first pattern is zonally symmetric and associated with absorbed upward-propagating wave activity, leading to a negative phase of the North Atlantic Oscillation (NAO) and cold-air outbreaks over northern Eurasia. This coupling mechanism is well-documented in the literature and is consistent with the downward migration of the northern annular mode (NAM). The second pattern is zonally asymmetric and linked to downward reflected planetary waves over Canada followed by a negative phase of the Western Pacific Oscillation (WPO) and cold-spells in Central Canada and the Great Lakes region. Causal effect network (CEN) analyses confirm the atmospheric pathways associated with this asymmetric pattern. Moreover, our findings suggest the reflective mechanism to be sensitive to the exact region of upward wave-activity fluxes and to be state-dependent on the strength of the vortex. Identifying the causal pathways that operate on weekly to monthly timescales can pave the way for improved sub-seasonal to seasonal forecasting of cold spells in the mid-latitudes.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:92433
Publisher:Nature Publishing Group

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation