[1] Sarker, E., Seyedmahmoudian, M., Jamei, E., Horan, B., & Stojcevski, A. (2020). Optimal management of home loads with renewable energy integration and demand response strategy. Energy, 210, 118602.
[2] Chen, Y., Zhang, L., Xu, P., & Di Gangi, A. (2021). Electricity demand response schemes in China: Pilot study and future outlook. Energy, 120042.
[3] Heydarian-Forushani, E., Golshan, M. E. H., Shafie-khah, M., & Catalão, J. P. (2020). A comprehensive linear model for demand response optimization problem. Energy, 209, 118474.
[4] Lee, J., Yoo, S., Kim, J., Song, D., & Jeong, H. (2018). Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response. Energy, 144, 1052-1063.
[5] Yi, P., Dong, X., Iwayemi, A., Zhou, C., & Li, S. (2013). Real-time opportunistic scheduling for residential demand response. IEEE Transactions on smart grid, 4(1), 227-234.
[6] Vardakas, J. S., Zorba, N., & Verikoukis, C. V. (2014). A survey on demand response programs in smart grids: Pricing methods and optimization algorithms. IEEE Communications Surveys & Tutorials, 17(1), 152-178.
[7] Srinivasan, D., Rajgarhia, S., Radhakrishnan, B. M., Sharma, A., & Khincha, H. P. (2017). Game-Theory based dynamic pricing strategies for demand side management in smart grids. Energy, 126, 132-143.
[8] Dong, J., Xue, G., & Li, R. (2016). Demand response in China: Regulations, pilot projects and recommendations–A review. Renewable and Sustainable Energy Reviews, 59, 13-27.
[9] Chavali, P., Yang, P., & Nehorai, A. (2014). A distributed algorithm of appliance scheduling for home energy management system. IEEE Transactions on Smart Grid, 5(1), 282-290.
[10] Zhu, Q., Sauer, P., & Başar, T. (2013). Value of demand response in the smart grid. In 2013 IEEE Power and Energy Conference at Illinois (PECI). IEEE.
[11] Paterakis, N. G., Erdinç, O., & Catalão, J. P. (2017). An overview of Demand Response: Key-elements and international experience. Renewable and Sustainable Energy Reviews, 69, 871-891.
[12] Yu, M., & Hong, S. H. (2016). Supply–demand balancing for power management in smart grid: A Stackelberg game approach. Applied energy, 164, 702-710.
[13] Tang, R., Wang, S., & Li, H. (2019). Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids. Applied Energy, 250, 118-130.
[14] Yu, M., & Hong, S. H. (2015). A real-time demand-response algorithm for smart grids: A stackelberg game approach. IEEE Transactions on smart grid, 7(2), 879-888.
[15] Chai, B., Chen, J., Yang, Z., & Zhang, Y. (2014). Demand response management with multiple utility companies: A two-level game approach. IEEE Transactions on Smart Grid, 5(2), 722-731.
[16] Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., & Basar, T. (2013). Dependable demand response management in the smart grid: A Stackelberg game approach. IEEE Transactions on Smart Grid, 4(1), 120-132.
[17] Deng, R., Yang, Z., Hou, F., Chow, M. Y., & Chen, J. (2014). Distributed real-time demand response in multiseller–multibuyer smart distribution grid. IEEE Transactions on Power Systems, 30(5), 2364-2374.
[18] Alipour, M., Zare, K., Seyedi, H., & Jalali, M. (2019). Real-time price-based demand response model for combined heat and power systems. Energy, 168, 1119-1127.
[19] Monfared, H. J., Ghasemi, A., Loni, A., & Marzband, M. (2019). A hybrid price-based demand response program for the residential micro-grid. Energy, 185, 274-285.
[20] Deng, R., Yang, Z., Chow, M. Y., & Chen, J. (2015). A survey on demand response in smart grids: Mathematical models and approaches. IEEE Transactions on Industrial Informatics, 11(3), 570-582.
[21] Ghazvini, M. A. F., Soares, J., Horta, N., Neves, R., Castro, R., & Vale, Z. (2015). A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers. Applied energy, 151, 102-118.
[22] Chai, Y., Xiang, Y., Liu, J., Gu, C., Zhang, W., & Xu, W. (2019). Incentive-based demand response model for maximizing benefits of electricity retailers. Journal of Modern Power Systems and Clean Energy, 7(6), 1644-1650.
[23] Wen, L., Zhou, K., Li, J., & Wang, S. (2020). Modified deep learning and reinforcement learning for an incentive-based demand response model. Energy, 205, 118019.
[24] Ghazvini, M. A. F., Faria, P., Ramos, S., Morais, H., & Vale, Z. (2015). Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market. Energy, 82, 786-799.
[25] Yu, M., & Hong, S. H. (2017). Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach. Applied Energy, 203, 267-279.
[26] Lu, X., Li, K., Xu, H., Wang, F., Zhou, Z., & Zhang, Y. (2020). Fundamentals and business model for resource aggregator of demand response in electricity markets. Energy, 204, 117885.
[27] (2009). California independent system operator demand response barriers study (per FERC Order 719). Available: <https://www.caiso.com/Documents/ DemandResponseBarriersStudy.pdf>.
[28] Dyson, M., & Kelly, I. (2016). Demand Response Wins: US Supreme Court Upholds FERC Order 745. RMI Outlet Blog.
[29] Dranka, G. G., & Ferreira, P. (2019). Review and assessment of the different categories of demand response potentials. Energy, 179, 280-294.
[30] Zhang, S., Jiao, Y., & Chen, W. (2017). Demand-side management (DSM) in the context of China's on-going power sector reform. Energy Policy, 100, 1-8.
[31] Tang, H., Wang, S., & Li, H. (2020). Flexibility Categorization, Sources, Capabilities and Technologies for Energy-Flexible and Grid-Responsive Buildings: State-of-The-Art and Future Perspective. Energy, 119598.
[32] ALiero, M. S., Qureshi, K. N., Pasha, M. F., & Jeon, G. (2021). Smart Home Energy Management Systems in Internet of Things networks for green cities demands and services. Environmental Technology & Innovation, 101443.
[33] McIlvennie, C., Sanguinetti, A., & Pritoni, M. (2020). Of impacts, agents, and functions: An interdisciplinary meta-review of smart home energy management systems research. Energy Research & Social Science, 68, 101555.
[34] Li, Y., Li, J., He, J., & Zhang, S. (2021). The real-time pricing optimization model of smart grid based on the utility function of the Logistic function. Energy, 120172.
[35] Sortomme, E., Hindi, M. M., MacPherson, S. J., & Venkata, S. S. (2010). Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE transactions on smart grid, 2(1), 198-205.
[36] Wisittipanit, N., & Wisittipanich, W. (2018). Comparison of particle swarm optimization and differential evolution for aggregators’ profit maximization in the demand response system. Engineering Optimization, 50(7), 1134-1147.
[37] Yang, P., Tang, G., & Nehorai, A. (2012). A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems, 28(2), 884-892.
[38] Meng, F. L., & Zeng, X. J. (2013). A Stackelberg game-theoretic approach to optimal real-time pricing for the smart grid. Soft Computing, 17(12), 2365-2380.
[39] Guo, P., Li, V. O., & Lam, J. C. (2017). Smart demand response in China: Challenges and drivers. Energy Policy, 107, 1-10.
[40] Jian, L., Xue, H., Xu, G., Zhu, X., Zhao, D., & Shao, Z. Y. (2012). Regulated charging of plug-in hybrid electric vehicles for minimizing load variance in household smart microgrid. IEEE Transactions on Industrial Electronics, 60(8), 3218-3226.
[41] Chiu, W. Y., Hsieh, J. T., & Chen, C. M. (2019). Pareto optimal demand response based on energy costs and load factor in smart grid. IEEE Transactions on Industrial Informatics, 16(3), 1811-1822.
[42] Aumann, R. J. (1995). Backward induction and common knowledge of rationality. Games and Economic Behavior, 8(1), 6-19.
[43] Tavassoli-Hojati, Z., Ghaderi, S. F., Iranmanesh, H., Hilber, P., & Shayesteh, E. (2020). A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids. Energy, 117514.
[44] Talaat, M., Farahat, M. A., Mansour, N., & Hatata, A. Y. (2020). Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach. Energy, 196, 117087.
[45] Sadaei, H. J., e Silva, P. C. D. L., Guimarães, F. G., & Lee, M. H. (2019). Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy, 175, 365-377.