Using fractionation profile of potentially toxic elements in soils to investigate their accumulation in Tilia sp. leaves in urban areas with different pollution levelsMitrovic, M., Blanusa, T., Pavlovic, M., Pavlovic, D., Kostic, O., Perovic, V., Jaric, S. and Pavlovic, P. (2021) Using fractionation profile of potentially toxic elements in soils to investigate their accumulation in Tilia sp. leaves in urban areas with different pollution levels. Sustainability, 13 (17). 9784. ISSN 2071-1050
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/su13179784 Abstract/SummaryOptimal uptake of micronutrients (B, Cu, Fe, Mn, and Zn) and managing the potentially toxic elements (PTEs) (Co, Cr, Ni, Pb, and Sr) in the ranges not detrimental to plant function may be linked to improving plants’ healthy growth and the ability to provide ecosystem services. We investigated concentrations, mobility, and potential availability of potentially toxic elements (PTEs) in soil samples from polluted and non-polluted municipal parks in Reading (UK) and Belgrade (Serbia) and their impact on elemental concentrations in Tilia leaves. We aimed to identify common limiting factors potentially affecting the growth/healthy function of this widely-used tree species. Levels of all elements in soil were below limits established by the directive of European Communities, except for Ni at Belgrade sites. Content of Co, Cr, Cu, Fe, Ni, Pb, and Zn in soluble fraction at all locations was <10%, indicating low mobility; B showed moderate mobility (11.1%–20.7%), Mn (6.5%–55.6%), and Sr—high (44%–76.3%). Principal Component Analysis of Tilia leaf tissues showed a different capacity for uptake/accumulation of PTEs in different locations. Findings indicate the complexity of local edaphic influences on plants’ elemental uptake and the risk of those leading to deficiency of important micronutrients, which may impede trees’ function and thus the ability to optimally provide ecosystem services.
DownloadsDownloads per month over past year
1. World Health Organization (WHO). Environment and Health for European Cities in the 21st Century: Making a Difference; WHO Regional Office for Europe: Copenhagen, Denmark, 2017. Available online: https://www.euro.who.int/__data/assets/pdf_file/0020/341615/bookletdef.pdf (accessed on 21 June 2020).
2. UN DESA (United Nations, Department of Economic and Social Affairs). 2020. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 11 March 2021).
3. Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182, https://doi.org/10.1093/bmb/ldg032.
4. Zhao, Z.; Hazelton, P. Evaluation of accumulation and concentration of heavy metals in different urban roadside soil types in Miranda Park, Sydney. J. Soil. Sediment. 2016, 16, 2548–2556, https://doi.org/10.1007/s11368-016-1460-z.
5. Ruiz, F.; Borrego, J.; González-Regalado, M.L.; López González, N.; Carro, B.; Abad, M. Impact of millennial mining activities on sediments and microfauna of the Tinto River estuary (SW Spain). Mar. Pollut. Bull. 2008, 56, 1258–1264, https://doi.org/10.1016/j.marpolbul.2008.04.036.
6. Saxena, G.; Purchase, D.; Mulla, V.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. In Reviews of Environmental Contamination and Toxicology, 1st ed.; de Voogt, P., Ed.; Springer: Cham, Switzerland, 2019; pp. 71–131.
7. Wong, C.S.C.; Li, X.D.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16, https://doi.org/10.1016/j.envpol.2005.09.004.
8. Pavlović, D.; Pavlović, M.; Čakmak, D.; Kostić, O.; Jarić, S.; Sakan, S.; Đorđević, D.; Mitrović, M.; Gržetić, I.; Pavlović, P. Fractionation, mobility and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities. Arch. Environ. Contam. Toxicol. 2018, 75, 335–350, https://doi.org/10.1007/s00244-018-0518-x.
9. Adriano, D.C. Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001.
10. Pavlović, M.; Rakić, T.; Pavlović, D.; Kostić, O.; Jarić, S.; Mataruga, Z.; Pavlović, P.; Mitrović, M. Seasonal variations of trace element contents in leaves and bark of horse chestnut (Aesculus hippocastanum L.) in urban and industrial regions in Serbia. Arch. Biol. Sci. 2017, 69, 201–214, https://doi.org/10.2298/ABS161202005P.
11. Zhang, Q.; Yu, R.; Fu, S.; Wu, Z.; Chen, H.Y.H.; Liu, H. Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Sci. Rep. 2019, 9, 1049, https://doi.org/10.1038/s41598-018-36582-y.
12. Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nied, X.; Liaoab, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Processes Impacts 2020, 22, 1596, https://doi.org/10.1039/D0EM00189A.
13. Batey, T.; McKenzie, D.C. Soil Compaction: Identification Directly in the Field. Soil Use Manag. 2006, 22, 123–131, https://doi.org/10.1111/j.1475-2743.2006.00017.x.
14. Cheng, H.; Li, M.; Zhao, C.; Li, V.; Peng, M.; Qin, A.; Cheng, X. Overview of trace metals in the urban soil of 31 metropolises in China. J. Geochem. Explor. 2014, 139, 31–52, https://doi.org/10.1016/j.gexplo.2013.08.012.
15. Adamo, P.; Agrelli, D.; Zampella, M. Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. In Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, 2nd ed.; De Vivo, B., Belkin, H., Lima, A., Eds.; Elsevier: Amsterdam, Netherlands, 2018; pp. 153–194.
16. Woszczyk, M.; Spychalski, W.; Boluspaeva, L. Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan—implications for the assessment of environmental quality. Environ. Monit. Assess. 2018, 190, 362, https://doi.org/10.1007/s10661-018-6733-0.
17. Alan, M.; Kara, D. Assessment of sequential extraction methods for the prediction of bioavailability of elements in plants grown on agricultural soils near to boron mines in Turkey. Talanta 2019, 200, 41–50, https://doi.org/10.1016/j.talanta.2019.03.031.
18. Li, M.S.; Yang, S.X. Heavy Metal Contamination in Soils and Phytoaccumulation in a Manganese Mine Wasteland, South China. Air Soil Water Res. 2020, 1, 31–41, https://doi.org/10.4137/ASWR.S2041.
19. Sutherland, R.A. BCR-701: A review of 10-years of sequential extraction analyses. Anal. Chim. Acta 2010, 680, 10–20, https://doi.org/10.1016/j.aca.2010.09.016.
20. Jain, C.K.; Malik, D.S.; Yadav, R. Metal fractionation study on bed sediments of Lake Nainital, Uttaranchal, India. Environ. Monit. Assess. 2007, 130, 129–139, https://doi.org/10.1007/s10661-006-9383-6.
21. Caporale, A.G.; Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2016, 2, 15–27, https://doi.org/10.1007/s40726-015-0024-y.
22. Pavlović, P.; Marković, M.; Kostić, O.; Sakan, S.; Djordjević, D.; Perović, V.; Pavlović, D.; Pavlović, M.; Čakmak, D.; Jarić, S.; Paunović, M.; Mitrović, M. Evaluation of potentially toxic element contamination in the riparian zone of the River Sava. Catena 2019, 174, 399–412, https://doi.org/10.1016/j.catena.2018.11.034.
23. Pavlović, P.; Sawidis, T.; Breuste, J.; Kostić, O.; Čakmak, D.; Đorđević, D.; Pavlović, D.; Pavlović, M.; Perović, V.; Mitrović, M. Fractionation of potentially toxic elements (PTEs) in urban soils from Salzburg, Thessaloniki and Belgrade: An insight into source identification and human health risk assessment. Int. J. Environ. Res. Public Health 2021, 18, 6014, https://doi.org/10.3390/ijerph18116014.
24. Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press LLC: Boca Raton, FL, USA, 2001.
25. Landner, L.; Reuther, R. Speciation, Mobility and Bioavailability of Metals in the Environment, Metals in Society and in the Environment: A Critical Review of Current Knowledge on Fluxes, Speciation, Bioavailability and Risk for Adverse Effects of Copper, Chromium, Nickel and Zinc, 1st ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 139–274.
26. Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Plant. Nutr. Soil Sci. 2010, 10, 268–292, http://dx.doi.org/10.4067/S0718-95162010000100005.
27. Reeder, R.J.; Schoonen, M.A.A.; Lanzirotti, A. Metal speciation and its role in bioaccessibility and bioavailability. Rev. Mineral. Geochem. 2006, 64, 59–113, https://doi.org/10.2138/rmg.2006.64.3.
28. Li, J.; Lu, J.; Shim, H.; Deng, X.; Lian, J.; Jia, Z.; Li, J. Use of the BCR sequential extraction procedure for the study of metal availability to plants. J. Environ. Monit. 2010, 12, 466–471, https://doi.org/10.1039/b916389a.
29. Wang, Y.; Xu, W.; Li, J.; Song, Y.; Hua, M.; Li, W.; He, X. Assessing the fractionation and bioavailability of heavy metals in soil–rice system and the associated health risk. Environ. Geochem. Health 2021, 1–18, https://doi.org/10.1007/s10653-021-00876-4.
30. Pataki, D.E.; Carreiro, V.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36, https://doi.org/10.1890/090220.
31. Cameron, R.W.; Blanuša, T. Green infrastructure and ecosystem services–is the devil in the detail? Ann. Bot. 2016, 118, 377–391, https://doi.org/10.1093/aob/mcw129.
32. Dzierżanowski, K.; Popek, V.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int. J. Phytoremediation 2011, 13, 1037–1046, https://doi.org/10.1080/15226514.2011.552929.
33. Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban. For. Urban. Green. 2016, 20, 249–253, https://doi.org/10.1016/j.ufug.2016.09.008.
34. Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247, https://doi.org/10.3390/su12104247.
35. Pugh, T.A.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699, https://doi.org/10.1021/es300826w.
36. Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73, https://doi.org/10.1007/s13280-019-01164-3.
37. Bargagli, R. Trace Elements in Terrestrial Plants: An. Ecophysiological Approach to Biomonitoring and Biorecovery, 1st ed.; Springer: Berlin, Germany, 1998.
38. Molnar, V.E.; Tozser, D.; Szabo, S.; Tothmeresz, B.; Simon, E. Use of leaves as bioindicator to assess air pollution based on composite proxy measure (APTI), dust amount and elemental concentration of metals. Plants 2020, 9, 1743, https://doi.org/10.3390/plants9121743.
39. Fantozzi, F.; Monaci, F.; Blanusa, V.; Bargagli, R. Holm Oak (Quercus ilex L.) canopy as interceptor of airborne trace elements and their accumulation in the litter and topsoil. Environ. Pollut. 2013, 183, 89–95, https://doi.org/10.1016/j.envpol.2012.11.037.
40. Martínez-Sánchez, M.J.; Martínez-López, S.; García-Lorenzo, M.L.; Martínez-Martínez, L.B.; PérezSirvent, V. Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma 2011, 160, 535–541, https://doi.org/10.1016/j.geoderma.2010.11.001.
41. Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Stevanović, B.; Mitrović, M.; Pavlović, P. Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits. Plants 2020, 9, 657, https://doi.org/10.3390/plants9050657.
42. Madejón, P.; Ciadamidaro, L.; Marañón, T.; Murillo, J.M. Long-term biomonitoring of soil contamination using poplar trees: Accumulation of trace elements in leaves and fruits. Int. J. Phytoremediation 2013, 15, 602–614, https://doi.org/10.1080/15226514.2012.723062.
43. Tomašević, M.; Rajšić, S.; Đorđević, D.; Tasić, M.; Krstić, J.; Novaković V. Heavy metals accumulation in tree leaves from urban areas. Environ. Chem. Lett. 2004, 2, 151–154, https://doi.org/10.1007/s10311-004-0081-8.
44. Guéguen, F.; Stille, P.; Lahd Geagea, M.; Boutin, R. Atmospheric pollution in an urban environment by tree bark biomonitoring-part I: Trace element analysis. Chemosphere 2012, 86, 1013–1019, https://doi.org/10.1016/j.chemosphere.2011.11.040.
45. Yu, K.; Van Geel, M.; Ceulemans, T.; Geerts, W.; Ramos, M.M.; Serafim, C.; Sousa, N.; Castro, P.M.L.; Kastendeuch, P.; Najjar, G.; et al. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environ. Pollut. 2018, 243, 1912–1922, https://doi.org/10.1016/j.envpol.2018.09.053.
46. Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.L.; Rive‘re, L.M.; Vidal-Beaudet, L.; Bodson, M.; Randrup, B.T. Tree establishment practice in towns and cities—results from a European survey. Urban. For. Urban. Green. 2002, 1, 83–96, https://doi.org/10.1078/1618-8667-00009.
47. Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solution. A review. Environ. Pollut. 2014, 189, 98–110, https://doi.org/10.1016/j.envpol.2014.02.025.
48. WRB—World Reference Base for Soil Resources. World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006.
49. Schad, P. Technosols in the World Reference Base for Soil Resources—History and definitions. Soil Sci. Plant. Nutr. 2018, 64, 138–144, https://doi.org/10.1080/00380768.2018.1432973.
50. Lehmann, A. Technosols and other proposals on urban soils for the WRB (World Reference Base for Soil Re-sources). Int. Agrophys. 2006, 20, 129–134.
51. Puskás, I.; Farsang, A. Evaluation of human-impacted soils in Szeged (SE Hungary) with special emphasis on physical, chemical and biological properties. In The Soils of Tomorrow—Changing Soil in a Changing World; Advances in GeoEcology 39; Dazzi, C., Constantini, E.A.C., Eds.; Catena Verlag: Reiskirchen, Germany, 2008; pp. 117–147.
52. Bullock, P.; Gregory, P.J. Soils: A neglected resource in urban areas. In Soils in the Urban Environment; Bullock, P., Gregory, P.J., Eds.; Blackwell Publishing Ltd: Oxford, UK, 2009; pp. 1–4.
53. Pavlović, P.; Kostić, N.; Karadžić, B.; Mitrović, M. The Soils of Serbia; Springer Science+Business Media: Dordrecht, Germany, 2017.
54. Decision on declaring a protected natural asset “Arboretum of Faculty of Forestry” no. 21.7.2011, Assembly of the City of Belgrade: Belgrade, 2011. (in Serbian) https://www.paragraf.rs/propisi/zakon_o_zastiti_prirode.html
55. Rossini Oliva, S.; Mingorance, M.D. Assessment of Airborne Heavy Metal Pollution by Aboveground Plant Parts. Chemosphere 2006, 65, 177–182, https://doi.org/10.1016/j.chemosphere.2006.03.003.
56. Kalinović, T.S.; Serbula, S.M.; Radojevic, A.A.; Kalinovic, J.V.; Steharnik, M.M.; Petrovic, J.V. Elder, linden and pine biomonitoring ability of pollution emitted from the copper smelter and the tailings ponds. Geoderma 2016, 262, 266–275, https://doi.org/10.1016/j.geoderma.2015.08.027.
57. Pavlović, D.; Pavlović, M.; Marković, M.; Karadžić, B.; Kostić, O.; Jarić, S.; Mitrović, M.; Gržetić, I.; Pavlović, P. Possibilities of assessing trace metal pollution using Betula pendula Roth. leaf and bark-experience in Serbia. J. Serb. Chem. Soc. 2017, 82, 723–737, https://doi.org/10.2298/JSC170113024P.
58. Rayment, G.E.; Higginson, F.R. Australian Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, Australia, 2002.
59. U.S. Environmental Protection Ageny (US EPA). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; Revision 2; EPA: Washington, DC, USA, 1996.
60. U.S. Environmental Protection Agency (US EPA). Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; EPA: Washington, DC, USA, 1996.
61. De Andrade Passos, E.; Alves, J.C.; dos Santos, I.S.; Alves, J.P.H.; Garcia, C.A.B.; Costa, C.S. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchem. J. 2010, 96, 50–57, https://doi.org/10.1016/j.microc.2010.01.018.
62. Kabala, C.; Singh, B.R. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual. 2001, 30, 485–492, https://doi.org/10.2134/jeq2001.302485x.
63. IBM SPSS Statistics. Statistics for Windows, Version 24.0. Armonk; NY: IBM Corp., 2016. Available online: https://www.ibm.com/support/pages/spss-statistics-210-available-download (accessed on 8 June 2020).
64. Layman, R.M.; Day, S.D.; Mitchell, D.K.; Chen, Y.; Harris, J.R.; Daniels, W.L. Below ground matters: Urban soil rehabilitation increases tree canopy and speeds establishment. Urban. For. Urban. Green. 2016, 16, 25–35, https://doi.org/10.1016/j.ufug.2016.01.004.
65. Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Springer: New York, NY, USA, 2013.
66. Blume, H.P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Scheffer/Schachtschabel Soil Science; Springer: Heidelberg, Germany, 2016.
67. Kloke, A.; Sauerback, D.R.; Vetter, H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In Changing Metal Cycles and Human Health; Nriagu. J.O., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 113–141.
68. Morel, J.L. Bioavailability of trace elements to terrestrial plants. In Soil Ecotoxicology, 1st ed.; Tarradellas, J., Bitton, G., Rossel, D., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1997; pp. 141–176.
69. Soil Survey Division Staff. Selected chemical properties. In Soil survey manual. Handbook 18. Washington: Soil Conservation Service, United States Department of Agriculture, 1993, pp. 46-155.
70. Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant. Biol. 2008, 59, 651–681, https://doi.org/10.1146/annurev.arplant.59.032607.092911.
71. Jim, C.Y. Urban soil characteristics and limitations for landscape planting in Hong Kong. Landsc. Urban. Plan. 1998, 40, 235–249, https://doi.org/10.1016/S0169-2046(97)00117-5.
72. Gu. Y.G.; Lin. Q.; Gao, Y.P. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean Prod. 2016, 115, 122–129, https://doi.org/10.1016/j.jclepro.2015.12.031.
73. Gomes, H.I.; Mayes, V.M.; Rogerson, M.; Stewart, D.I.; Burke, I.T. Alkaline residues and the environment: A review of impacts, management practices and opportunities. J. Clean. Prod. 2016, 112, 3571–3582, https://doi.org/10.1016/j.jclepro.2015.09.111.
74. Cunningham, M.A.; Snyder, E.; Yonkin, D.; Ross, M.; Elsen, T. Accumulation of deicing salts in soils in an urban environment. Urban. Ecosyst. 2008, 11, 17–31, https://doi.org/10.1007/s11252-007-0031-x.
75. Directive 86/278/EEC. Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off. J. Eur. Communities OJ L 181, 4.7.1986, p. 6.
76. Gawlik, B.M.; Bidoglio, G. Background Values in European Soils and Sewage Sludges PART III Results of a JRC-Coordinated Study on Background Values; European Commision, Joint Research Centre: Brussels, Belgium, 2006.
77. Padbhushan, R.; Kumar, D. Fractions of soil boron: A review. J. Agric. Sci. 2017, 155, 1023–1032, https://doi.org/10.1017/S0021859617000181.
78. Gržetić, I.; Ghariani, R.H.A. Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia). J. Serb. Chem. Soc. 2008, 3, 923–934, https://doi.org/10.2298/JSC0809923G.
79. Manta, S.D.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243, https://doi.org/10.1016/S0048-9697(02)00273-5.
80. de Miguel, E.; de Grado, M.J.; Llamas, J.F.; Martın-Dorado, A.; Mazadiego, L.F. The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Sci. Total Environ. 1998, 215, 113–122, https://doi.org/10.1016/S0048-9697(98)00112-0.
81. Tani, Y.; Miyata, N.; Ohashi, M.; Iwahori, K.; Soma, M.; Seyma, H. Interaction of Co(II), Zn(II) and As(III/V) with manganese oxides formed by Mn-oxidizing fugus. In Proceedings of the 16th Iternational Symposium on Environmental Biogeochemistry, 1-6 September 2003, Oriase, Northern Japan, 2003.
82. Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007.
83. Ghariani, R.H.A.; Gržetić, I.; Antić, M.; Nikolić-Mandić, S. Distribution and availability of potentially toxic metals in soil in central area of Belgrade, Serbia. Environ. Chem. Lett. 2010, 8, 261–269, https://doi.org/10.1007/s10311-009-0215-0.
84. Bashir, M.; Khan, M.H.; Khan, R.A.; Aslam, S. Fractionation of heavy metals and their uptake by vegetables growing in soils irrigated with sewage effluent. Turkish. J. Eng. Env. Sci. 2014, 38, 1–10, https://doi.org/10.3906/muh-1309-21.
85. Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533, https://doi.org/10.1016/j.chemosphere.2017.03.074.
86. Ghrefat, H.A.; Yusuf, N.; Jamarh, A.; Nazzal, J. Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River, Jordan. Environ. Earth Sci. 2012, 66, 199–208, https://doi.org/10.1007/s12665-011-1222-6.
87. Osakwe, S.A. Chemical partitioning of iron, cadmium, nickel and chromium in contaminated soils of south-eastern Nigeria. Chem. Speciat. Bioavailab. 2013, 25, 71–78, https://doi.org/10.3184/095422913X13581872822530.
88. Jonhson, C.C.; Ander, E.L.; Cave, M.R.; Palumbo-Roe, B. Normal Background Concentrations (NBCs) of Contaminants in English Soils: Final Project Report; British Geological Survey Commissioned Report, CR/12/035; British Geological Survey, Keyworth, Nottingham, UK, 2012.
89. Van Bohemen, H.D.; Janssen Van de Laak, V.H. The influence of roads infrastructure and traffic on soil, water, and air quality. Environ. Manag. 2003, 31, 50–68, https://doi.org/10.1007/s00267-002-2802-8.
90. Dragović, R.; Gajić, B.; Dragović, S.; Đorđević, M.; Đorđević, M.; Mihailović, N.; Onjia, A. Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia). J. Clean. Prod. 2014, 4, 550–562, https://doi.org/10.1016/j.jclepro.2014.03.060.
91. Yutong, Z.; Qing, X.; Shenggao, L. Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China. Environ. Sci. Pollut. Res. 2016, 3, 24107–24114, https://doi.org/10.1007/s11356-016-7598-9.
92. Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256, https://doi.org/10.1016/S0269-7491(02)00478-5.
93. Mahanta, M.J.; Bhattacharyya, K.G. Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environ. Monit. Assess. 2011, 173, 221–240, https://doi.org/10.1007/s10661-010-1383-x.
94. Nemati, K.; Abu Bakar, N.K.; Sobhanzadeh, E.; Radzi Abas, M.A. modification of the BCR sequential extraction procedure to investigate the potential mobility of copper and zinc in shrimp aquaculture sludge. Microchem. J. 2009, 92, 165–169, https://doi.org/10.1016/j.microc.2009.03.002.
95. Jaradat, Q.M.; Massadeh, A.M.; Zaitoun, M.A.; Maitah, B.M. Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles. Environ. Monit. Assess. 2006, 112, 197–210, https://doi.org/10.1007/s10661-006-0356-6.
96. Lu, Y.; Zhu, F.; Chen, J.; Gan, H.; Guo, Y. Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environ. Monit. Assess. 2007, 134, 429–439, https://doi.org/10.1007/s10661-007-9634-1.
97. Tokalioğlu, S.; Yilmaz, V.; Kartal, Ş. An assessment on metal sources by multivariate analysis and speciation of metals in soil samples using the BCR sequential extraction procedure. Clean Soil Air Water 2010, 38, 713–718, https://doi.org/10.1002/clen.201000025.
98. Davidson, C.M.; Urquhart, G.J.; Ajmone-Marsan, F.; Biasioli, M.; daCosta Duarte, A.; Dıaz-Barrientos, E.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; Madrid, L.; Rodrigues, S.; Zupan, M. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal. Chim. Acta 2006, 565, 63–72, https://doi.org/10.1016/j.aca.2006.02.014.
99. Jain, C.K.; Gurunadha Rao, V.V.S.; Prakash, B.A.; Mahesh Kumar, K.; Yoshida, M. Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environ. Monit. Assess. 2010, 166, 57–67, https://doi.org/10.1007/s10661-009-0984-8.
100. Wilcke, W.; Müller, S.; Kanchanakool, N.; Zech, W. Urban soil contamination in Bangkok: Heavy metal and aluminium partitioning in topsoils. Geoderma 1998, 86, 211–228, https://doi.org/10.1016/S0016-7061(98)00045-7.
101. Cakmak, D.; Perovic, V.; Kresovic, M.; Jaramaz, D.; Mrvic, V.; Belanovic Simic, S.; Saljnikov, E.; Trivan, G. Spatial distribution of soil pollutants in urban green areas (a case study in Belgrade). J. Geochem. Explor. 2018, 188, 308–317, https://doi.org/10.1016/j.gexplo.2018.02.001.
102. Thornton, I. Metal contamination of soils in urban areas. In Soils in the Urban Environment, 1st ed.; Bullock, P., Gregory, P.J., Eds.; Blackwell Scientific Publications, Oxford, UK, 1991; pp. 47–75.
103. Zhao, L.; Xu, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662, https://doi.org/10.1016/j.scitotenv.2013.08.094.
104. Ramos, L.; Hernandez, L.M.; Gonzalez, M.J. Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Doñana National Park. J. Environ. Qual. 1994, 23, 50–57, https://doi.org/10.2134/jeq1994.00472425002300010009x.
105. Crnković, D.; Ristić, M.; Antonović, D. Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment. Contam. 2006, 15, 581–589, https://doi.org/10.1080/15320380600959073.
106. Biasioli, M.; Barberis, R.; Ajmone-Marsan, F. The influence of a large city on some soil properties and metals content. Sci. Total Environ. 2006, 356, 154–164, https://doi.org/10.1016/j.scitotenv.2005.04.033.
107. Keshavarzi, B.; Najmeddina, A.; Moorea, F.; Moghaddama, P.A. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. Ecotoxicol. Environ. Saf. 2019, 167, 365–375, https://doi.org/10.1016/j.ecoenv.2018.10.041.
108. Olajire, A.A.; Ayodele, E.T.; Oyediran, G.O.; Oluyemi, E.A. Levels and speciation of heavy metals in soils of industrial southern Nigeria. Environ. Monit. Assess. 2002, 85, 135–155, https://doi.org/10.1023/A:1023613418727.
109. Katana, C.; Jane, M.; Harun, M. Speciation of zinc and copper in open-air automobile mechanic workshop soils in Ngara Area-Nairobi Kenya. Resour. Environ. 2013, 3, 145–154, https://doi.org/10.5923/j.re.20130305.06.
110. Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner's Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press, Elsevier Ltd.: Amsterdam, the Netherlands, 2012; pp. 233-243.
111. Goldberg, S.; Lesch, S.M.; Suarez, D.L. Predicting boron adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci. Soc. Am. J. 2000, 64, 1356–1363, https://doi.org/10.2136/sssaj2000.6441356x.
112. Mitrović, M.; Pavlović, P.; Lakušić, D.; Đurđević, L.; Stevanović, B.; Kostić, O.; Gajić, G. The potential of Festuca rubra and Calamagrostis epigejos for the revegetation of fly ash deposits. Sci. Total Environ. 2008, 407, 338–347, https://doi.org/10.1016/j.scitotenv.2008.09.001.
113. Parr, A.J.; Loughman, B.C. Boron and membrane functions in plants. In Metals and Micronutrients: Uptake and Utilization by Plants, 1st ed.; Robb, D.A., Pierpoint, W.S., Eds.; Academic Press: London, UK, 1983; pp. 87–107.
114. Ferreya, R.E.; Aljaro, A.U.; Ruiz, R.S.; Rojas, L.P.; Oster, J.D. Behavior of 42 crop species grown in saline soils with high boron concentrations. Agric. Water Manag. 1997, 34, 111–124, https://doi.org/10.1016/S0378-3774(97)00014-0.
115. Sawidis, T.; Breuste, J.; Mitrović, M.; Pavlović, P.; Tsigaridas, K. Trees as bioindicators of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570, https://doi.org/10.1016/j.envpol.2011.08.008.
116. Page, V.; Feller, U. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann. Bot. 2005, 96, 425–434, https://doi.org/10.1093/aob/mci189.
117. Page, V.; Weisskopf, L.; Feller, U. Heavy metals in white lupin: Uptake, root to-shoot transfer and redistribution within the plant. New Phytol. 2006, 171, 329–341, https://doi.org/10.1111/j.1469-8137.2006.01756.x.
118. Parzych, A.; Jonczak, J. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J. Ecol. Eng. 2014, 15, 29–38, https://doi.org/10.12911/22998993.1109119.
119. Oorts, K. Copper. In Heavy Metals in Soils, 3rd ed.; Alloway, B.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 367–394.
120. Rademacher, P. Atmospheric Heavy Metals and Forest Ecosystems; Federal Research Centre for Forestry and Forest Products—BFH: Geneva, Switzerland; Brussels, Belgium, 2001.
121. Doganlar, Z.B.; Doganlar, O.; Erdogan, S.; Onal, Y. Heavy metal pollution and physiological changes in the leaves of some shrub, palm and tree species in urban areas of Adana, Turkey. Chem. Speciat. Bioavailab. 2012, 24, 65–78, https://doi.org/10.3184/095422912X13338055043100.
122. Römheld, V.; Nikolić, M. Iron. In Handbook of Plant Nutrition, 1st ed.; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group, LLC: London, UK, 2007; pp. 329–350.
123. Khabaz-Saberi, H.; Rengel, Z.; Wilson, R.; Setter, T. Variation for tolerance to high concentration of ferrous iron (Fe2+) in Australian hexaploid wheat. Euphytica 2010, 172, 275–283, https://doi.org/10.1007/s10681-009-0069-3.
124. Berrow, M.L.; Burridge, J.C. Sources and distribution of trace elements in soils and related crops. In Proceedings of the International Conference on Management and Control of Heavy Metals in the Environment; CEP Consultants Ltd.: September 1979, London, UK, 1979.
125. Shacklette, H.T.; Erdman, J.A.; Harms, T.F. Trace elements in plants foodstuffs. In Toxicity of Heavy Metals in the Environment, 4th ed.; Oehme, F.W., Eds.; Marcel Dekker: New York, NY, USA, 1978; pp. 25–68.
126. Moyen, C.; Roblin, G. Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: Comparison with Ca effects. Environ. Exp. Bot. 2010, 68, 247–257, https://doi.org/10.1016/j.envexpbot.2009.12.004.
127. Tsukada, H.; Takeda, A.; Takahashi, T.; Hasegawa, H.; Hisamatsu, S.; Inaba, J. Uptake and distribution of 90Sr and stable Sr in rice plants. J. Environ. Radioact. 2005, 81, 221–231, https://doi.org/10.1016/j.jenvrad.2004.01.037.
128. Marschner, P. Marschner's Mineral. In Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier Ltd.: London, UK, 2012.
129. Tepanosyan, G.; Maghakyan, N.; Sahakyan, L.; Saghatelyan, A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol. Environ. Saf. 2017, 142, 257–265, https://doi.org/10.1016/j.ecoenv.2017.04.013. University Staff: Request a correction | Centaur Editors: Update this record |