• Amante, C., & Eakins, B. W. (2009). Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA.
• Arpe, K., & Leroy, S. A. G. (2007). The Caspian Sea level forced by the atmospheric circulation, as observed and modelled. Quaternary International, 173-174(SUPPL.), 144-152. doi: 10.1016/j.quaint.2007.03.008
• Arpe, K., Molavi-Arabshahi, M., & Leroy, S. A. G. (2020). Wind variability over the Caspian Sea, its impact on Caspian Sea water level and link with ENSO. International Journal of Climatology. doi: 10.1002/joc.6564
• Arpe, K., Tsuang, B. J., Tseng, Y. H., Liu, X. Y., & Leroy, S. A. G. (2019). Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation. Theoretical and Applied Climatology, 136(1-2), 475-488. doi: 10.1007/s00704-018-2481-x
• Arslanov, K. A., Yanina, T. A., Chepalyga, A. L., Svitoch, A. A., Makshaev, R. R., Maksimov, F. E., et al. (2016). On the age of the Khvalynian deposits of the Caspian Sea coasts according to 14C and 230Th/234U methods. Quaternary International, 409, 81-87. doi: 10.1016/j.quaint.2015.05.067
• Beni, A. N., Lahijani, H., Harami, R. M., Arpe, K., Leroy, S. A. G., Marriner, N., et al. (2013). Caspian sea-level changes during the last millennium: Historical and geological evidence from the south Caspian Sea. Climate of the Past, 9(4), 1645-1665. doi: 10.5194/cp-9-1645-2013
• Bezrodnykh, Y., Yanina, T., Sorokin, V., & Romanyuk, B. (2020). The northern Caspian Sea: Consequences of climate change for level fluctuations during the Holocene. Quaternary International, 540, 68-77. doi: 10.1016/j.quaint.2019.01.041
• Broström, A., Coe, M., Harrison, S. P., Gallimore, R., Kutzbach, J. E., Foley, J., et al. (1998). Land surface feedbacks and palaeomonsoons in northern Africa. Geophysical Research Letters, 25(19), 3615-3618. doi: 10.1029/98GL02804
• Chen, D., & Chen, H. W. (2013). Using the Köppen classification to quantify climate variation and change: An example for 1901-2010. Environmental Development, 6(1), 69-79. doi: 10.1016/j.envdev.2013.03.007
• Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., et al. (2017). Long-term Caspian Sea level change. Geophysical Research Letters, 44(13), 6993-7001. doi: 10.1002/2017GL073958
• Coe, M. T. (1998). A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands. Journal of Geophysical Research Atmospheres, 103(D8), 8885-8899. doi: 10.1029/98JD00347
• Coe, M. T. (2000). Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. Journal of Climate, 13(4), 686-704. doi: 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2
• Coe, M. T., & Bonan, G. B. (1997). Feedbacks between climate and surface water in northern Africa during the middle Holocene. Journal of Geophysical Research Atmospheres, 102(10), 11087-11101. doi: 10.1029/97jd00343
• Contoux, C., Jost, A., Ramstein, G., Sepulchre, P., Krinner, G., & Schuster, M. (2013). Megalake chad impact on climate and vegetation during the late Pliocene and the mid-Holocene. Climate of the Past, 9(4), 1417-1430. doi: 10.5194/cp-9-1417-2013
• Dyakonov, G.S., & Ibrayev, R.A., 2019. Long-term evolution of Caspian Sea thermohaline properties reconstructed in an eddy-resolving ocean general circulation model. Ocean Sci. 15, 527-541.
• Forte, A. M., & Cowgill, E. (2013). Late Cenozoic base-level variations of the Caspian Sea: A review of its history and proposed driving mechanisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 392-407. doi: 10.1016/j.palaeo.2013.05.035
• Hoskins, B. J., & Karoly, D. J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38(6), 1179-1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
• Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. (2013). The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94(9), 1339-1360. doi: 10.1175/BAMS-D-12-00121.1
• Kakroodi, A. A., Kroonenberg, S. B., Goorabi, A., & Yamani, M. (2014). Shoreline response to rapid 20th century sea-level change along the Iranian Caspian coast. Journal of Coastal Research, 30(6), 1243-1250. doi: 10.2112/JCOASTRES-D-12-00173.1
• Kakroodi, A. A., Leroy, S. A. G., Kroonenberg, S. B., Lahijani, H. A. K., Alimohammadian, H., Boomer, I., et al. (2015). Late Pleistocene and Holocene sea-level change and coastal paleoenvironment evolution along the Iranian Caspian shore. Marine Geology, 361, 111-125. doi: https://doi.org/10.1016/j.margeo.2014.12.007
• Kislov, A. V., Panin, A. V., & Toropov, P. A. (2014). Present-day variations and paleodynamics of the Caspian Sea level as a standard for climate modeling data verification. Russian Meteorology and Hydrology, 39(5), 328-334. doi: 10.3103/S1068373914050069
• Komijani, F., Chegini, V., & Siadatmousavi, S. M. (2019). Seasonal variability of circulation and air-sea interaction in the Caspian Sea based on a high resolution circulation model. Journal of Great Lakes Research, 45(6), 1113-1129.
• Koriche, S. A., Singarayer, J. S., & Cloke, H. L. (2021). The fate of the caspian sea under projected climate change and water extraction during the 21st century. Environmental Research Letters, 16(9). doi: https://doi.org/10.1088/1748-9326/ac1af5
• Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., Van Baak, C. G. C., et al. (2019). Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews, 188, 1-40. doi: 10.1016/j.earscirev.2018.10.013
• Kroonenberg, S. B., Kasimov, N. S., & Lychagin, M. Y. (2008). The Caspian Sea, a natural laboratory for sea-level change. Geography, environment, sustainability, 1(1), 22-37.
• Leroy, S. A. G., Lahijani, H. A. K., Crétaux, J.-F., Aladin, N. V., & Plotnikov, I. S. (2020). Past and current changes in the largest lake of the world: The caspian sea. In S. Mischke (Ed.), Large asian lakes in a changing world: Natural state and human impact (pp. 65-107). Cham: Springer International Publishing.
• Lodh, A. (2015). Impact of Caspian Sea drying on Indian monsoon precipitation and temperature as simulated by RegCM4 model. Hydrology Current Research, 6(217). doi: 10.4172/2157-7587.1000217
• Lofgren, B. M. (1997). Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. Journal of Climate, 10(11), 2847-2858. doi: 10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2
• Molavi-Arabshahi, M., Arpe, K., & Leroy, S. A. G. (2016). Precipitation and temperature of the southwest Caspian Sea region during the last 55 years: Their trends and teleconnections with large-scale atmospheric phenomena. International Journal of Climatology, 36(5), 2156-2172. doi: 10.1002/joc.4483
• Nandini-Weiss, S. D., Prange, M., Arpe, K., Merkel, U., & Schulz, M. (2020). Past and future impact of the winter North Atlantic Oscillation in the Caspian Sea catchment area. International Journal of Climatology, 40(5), 2717-2731. doi: 10.1002/joc.6362
• Nicholls, J. F., & Toumi, R. (2014). On the lake effects of the Caspian Sea. Quarterly Journal of the Royal Meteorological Society, 140(681), 1399-1408. doi: 10.1002/qj.2222
• Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S., & Bennington, V. (2013). Influence of the Laurentian Great Lakes on regional climate. Journal of Climate, 26(3), 789-804. doi: 10.1175/JCLI-D-12-00140.1
• Peixoto, J. P., & Oort, A. H. (1992). Physics of climate. College Park, United States: American Institute of Physics.
• Rodionov, S. N. (1994). Global and regional climate interaction: The Caspian Sea experience. Dordrecht: Springer Science+Business Media, B.V.
• Sousa, P. M., Ramos, A. M., Raible, C. C., Messmer, M., Tomé, R., Pinto, J. G., et al. (2020). North Atlantic integrated water vapor transport—from 850 to 2100 CE: Impacts on western European rainfall. Journal of Climate, 33(1), 263-279. doi: 10.1175/JCLI-D-19-0348.1
• Sousounis, P. J., & Fritsch, J. M. (1994). Lake-aggregate mesoscale disturbances. Part II: A case study of the effects on regional and synoptic-scale weather systems. Bulletin - American Meteorological Society, 75(10), 1793-1811. doi: 10.1175/1520-0477(1994)075<1793:LAMDPI>2.0.CO;2
• Tamura-Wicks, H., Toumi, R. and Budgell, W.P. (2015), Sensitivity of Caspian sea-ice to air temperature. Q.J.R. Meteorol. Soc., 141: 3088-3096. https://doi.org/10.1002/qj.2592
• Tsuang, B. J., Tu, C. Y., & Arpe, K. (2001). Lake parameterization for climate models. Max Planck Institute for Meteorology, 316.
• Valiantzas, J. D. (2006). Simplified versions for the penman evaporation equation using routine weather data. Journal of Hydrology, 331(3), 690-702. doi: https://doi.org/10.1016/j.jhydrol.2006.06.012
• Yanina, T., Bolikhovskaya, N., Sorokin, V., Romanyuk, B., Berdnikova, A., & Tkach, N. (2020). Paleogeography of the Atelian regression in the Caspian Sea (based on drilling data). Quaternary International. doi: 10.1016/j.quaint.2020.07.023
• Yanina, T. A. (2014). The Ponto-caspian region: Environmental consequences of climate change during the late Pleistocene. Quaternary International, 345, 88-99. doi: 10.1016/j.quaint.2014.01.045