Systematic propagation of AVHRR AOD uncertainties—a case study to demonstrate the FIDUCEO approachPopp, T. and Mittaz, J. (2022) Systematic propagation of AVHRR AOD uncertainties—a case study to demonstrate the FIDUCEO approach. Remote Sensing, 14 (4). e875. ISSN 2072-4292
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/rs14040875 Abstract/SummaryThe AVHRR aerosol optical depth (AOD) is inverted from measured reflectances in the red band using a statistical correlation of surface reflectance with mid-infrared channel reflectances and a modelling climatology of the aerosol type. For such a sensor not specifically designed for AOD retrieval, propagating uncertainties is crucial because the sensitivity of the retrieved AOD to the measured signal varies largely with retrieval conditions (AOD itself, surface brightness, aerosol optical properties/aerosol type, observing geometry). In order to quantify the different contributions to the AOD uncertainties, we have undertaken a thorough analysis of the retrieval operator and its sensitivities to the used input and auxiliary variables. Uncertainties are then propagated from measured reflectances to geophysical retrieved AOD datasets at the super-pixel level and further to gridded daily and monthly products. The propagation uses uncertainty correlations of separate uncertainty contributions from the FIDUCEO easyFCDR level1b products (common fully correlated, independent random, and structured parts) and estimated uncertainty correlation structures of other major effects in the retrieval (surface brightness, aerosol type ensemble, cloud mask). The pixel-level uncertainties are statistically validated against true error estimates versus AERONET ground-based AOD measurements. It is shown that a 10-year time record over Europe compares well to a merged multi-satellite record and that pixel-level uncertainties provide a meaningful representation of error distributions. The study demonstrates the benefits of new recipes for uncertainty characterization from the Horizon-2020 project FIDUCEO (“Fidelity and uncertainty in climate data records from Earth Observations”) and extends them further with recent additions developed within the ESA Climate Change Initiative.
Download Statistics DownloadsDownloads per month over past year Altmetric Funded Project Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |