Accessibility navigation


Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019

Capponi, A., Harvey, N. J. ORCID: https://orcid.org/0000-0003-0973-5794, Dacre, H. F., Beven, K., Saint, C., Wells, C. and James, M. R. (2022) Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019. Atmospheric Chemistry and Physics, 22 (9). pp. 6115-6134. ISSN 1680-7316

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

9MB
[img] Text - Accepted Version
· Restricted to Repository staff only

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/acp-22-6115-2022

Abstract/Summary

Volcanic ash advisories are produced by specialised forecasters who combine several sources of observational data and volcanic ash dispersion model outputs based on their subjective expertise. These advisories are used by the aviation industry to make decisions about where it is safe to fly. However, both observations and dispersion model simulations are subject to various sources of uncertainties that are not represented in operational forecasts. Quantification and communication of these uncertainties are fundamental for making more informed decisions. Here, we develop a data assimilation technique which combines satellite retrievals and volcanic ash transport and dispersion model (VATDM) output, considering uncertainties in both data sources. The methodology is applied to a case study of the 2019 Raikoke eruption. To represent uncertainty in the VATDM output, 1000 simulations are performed by simultaneously perturbing the eruption source parameters, meteorology and internal model parameters (known as the prior ensemble). The ensemble members are filtered, based on their level of agreement with Himawari satellite retrievals of ash column loading, to produce a posterior ensemble that is constrained by the satellite data and its uncertainty. For the Raikoke eruption, filtering the ensemble skews the values of mass eruption rate towards the lower values within the wider parameters ranges initially used in the prior ensemble (mean reduces from 1 Tg h-1 to 0.1 Tg h-1). Furthermore, including satellite observations from subsequent times increasingly constrains the posterior ensemble. These results suggest that the prior ensemble leads to an overestimate of both the magnitude and uncertainty in ash column loadings. Based on the prior ensemble, flight operations would have been severely disrupted over the Pacific Ocean. Using the constrained posterior ensemble, the regions where the risk is overestimated are reduced potentially resulting in fewer flight disruptions. The data assimilation methodology developed in this paper is easily generalisable to other short duration eruptions and to other VATDMs and retrievals of ash from other satellites.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:104797
Publisher:Copernicus Publications

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation