Accessibility navigation


Evaluating the effects of agroforestry versus arable systems on functional biodiversity and associated ecosystem services

Staton, T. (2021) Evaluating the effects of agroforestry versus arable systems on functional biodiversity and associated ecosystem services. PhD thesis, University of Reading

[img] Text - Thesis
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

5MB
[img] Text - Thesis Deposit Form
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.48683/1926.00105091

Abstract/Summary

The intensification of agricultural production in recent decades is widely recognised to have contributed substantially to global declines in biodiversity and associated ecosystem services, such as natural pest control and pollination. Agroforestry systems, where trees and/or shrubs are integrated into agricultural fields or landscapes, have the potential to increase biodiversity and associated ecosystem services. This thesis therefore aims to evaluate how agroforestry systems affect invertebrate pests, their natural enemies, and pollinators, in addition to productivity and farm income, relative to arable monocultures. A review and meta-analysis of the literature revealed that arthropod pests are significantly suppressed, and natural enemies significantly enhanced, in agroforestry systems relative to arable monocultures. However, the results were equivocal with high heterogeneity. Empirical data collected from three agroforestry sites with paired arable controls confirmed higher levels of plant and invertebrate biodiversity in agroforestry systems, and also revealed that the agroforestry systems led to a change in plant and invertebrate communities. These changes could be explained in terms of life-history traits, for example, plant communities in agroforestry systems were more perennial while invertebrates were less likely to be winged. Functional trait diversity of natural enemies was significantly higher in the agroforestry systems, indicating a higher level of biological control. Furthermore, species-level pollinator data from the same sites revealed that additional bee species in agroforestry contributed to functional trait diversity through niche complementarity. To further explore causes of heterogeneity, understorey management was manipulated at one agroforestry site, and was found to significantly affect natural enemy abundance and diversity, aphid suppression, and pollinator visitation. Although arable yields were up to 11% lower in agroforestry than arable systems, financial modelling predicted that agroforestry systems were capable of increasing farm income after at least seven years. Agroforestry systems therefore represent a viable option to restore farmland biodiversity and improve agricultural sustainability.

Item Type:Thesis (PhD)
Thesis Supervisor:Chesshire, H. and Girling, R.
Thesis/Report Department:School of Agriculture, Policy & Development
Identification Number/DOI:https://doi.org/10.48683/1926.00105091
Divisions:Life Sciences > School of Agriculture, Policy and Development > Department of Sustainable Land Management > Centre for Agri-environmental Research (CAER)
ID Code:105091

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation