* Baldauf, M. (2019) Local time stepping for a mass-consistent and time-split advection scheme. Q. J. R. Meteorol. Soc., 145, 337–346.
* Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and Reinhardt, T. (2011) Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887–3905.
* Chen, Y., Weller, H., Pring, S. and Shaw, J. (2017) Comparison of dimensionally split and multi-dimensional atmospheric transport schemes for long time steps. Q. J. R. Meteorol. Soc., 143, 2764–2779.
* Cullen, M. and Davies, T. (1991) A conservative split-explicit integration scheme with fourth-order horizontal advection. Q. J. R. Meteorol. Soc., 117, 993–1002.
* Davies, T., Cullen, M., Malcolm, A., Mawson, M., Staniforth, A., White, A. and Wood, N. (2005) A new dynamical core for the Met Oﬃce’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759–1782.
* Dawson, C., Trahan, C. J., Kubatko, E. J. and Westerink, J. J. (2013) A parallel local timestepping Runge-Kutta discontinuous Galerkin method with applications to coastal ocean modeling. Computer Methods in Applied Mechanics and Engineering, 259, 154–165.
* Dumbser, M., Käser, M. and Toro, E. F. (2007) An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity. Geophysical Journal International, 171, 695–717.
* Gottlieb, S., Shu, C.-W. and Tadmor, E. (2001) Strong stability-preserving high-order time discretization methods. SIAM review, 43, 89–112.
* Harris, L. M., Lauritzen, P. H. and Mittal, R. (2011) A ﬂux-form version of the conservative semi-lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. J. Comput. Phys., 230, 1215–1237.
* Hirt, C., Amsden, A. and Cook, J. (1997) An arbitrary Lagrangian-Eulerian computing method for all ﬂow speeds. J. Comput. Phys., 135, 203–216. URL: http://www.sciencedirect.com/science/article/pii/S 0021999197957028.
* Jebens, S., Knoth, O. and Weiner, R. (2011) Partially implicit peer methods for the compressible Euler equations. J. Comput. Phys.
* Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z. P., Smolarkiewicz, P. K., Szmelter, J. and Wedi, N. P. (2019) FVM 1.0: a nonhydrostatic ﬁnite-volume dynamical core for the IFS. Geosci. Model Dev., 12, 651–676.
* Kühnlein, C., Smolarkiewicz, P. and Dörnbrack, A. (2012) Modelling atmospheric ﬂows with adaptive moving meshes. J. Comput. Phys., 231, 2741–2763.
* Kühnlein, C. and Smolarkiewicz, P. K. (2017) An unstructured-mesh ﬁnite-volume MPDATA for compressible atmospheric dynamics. J. Comput. Phys., 334, 16–30.
* Lauritzen, P., Skamarock, W., Prather, M. and Taylor, M. (2012) A standard test case suite for two-dimensional linear transport on the sphere. Geosci. Model Dev., 5, 887–901.
* Lauritzen, P., Ullrich, P., Jablonowski, C., Bosler, P., Calhoun, D., Conley, A., Enomoto, T., Dong, L., Dubey, S., Guba, O., Hansen, A., Kaas, E., Kent, J., Lamarque, J.-F., Prather, M., Reinert, D., Shashkin, V., Skamarock, W., Sørensen, B., Taylor, M. and Tolstykh, M. (2014) A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes. Geosci. Model Dev., 7, 105–145.
* Leonard, B., Lock, A. and MacVean, M. (1996) Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon. Wea. Rev., 124, 2585–2606.
* Li, J. and Zhang, Y. (2022) Enhancing the stability of a global model by using an adaptively implicit vertical moist transport scheme. Meteorol Atmos Phys, 134.
* Lin, S.-J. (2004) A "vertically Lagrangian" ﬁnite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307.
* May, S. and Berger, M. (2017) An explicit implicit scheme for cut cells in embedded boundary meshes. J. Comput. Phys.
* Miura, H. (2007) An upwind-biased conservative advection scheme for spherical hexagonal-pentagonal grids. Mon. Wea. Rev., 135, 4038–4044.
* Rančić, M., Purser, R. and Mesinger, F. (1996) A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc., 122, 959–982.
* Smolarkiewicz, P. (1983) A simple positive deﬁnite advection scheme with small implicit diﬀusion. Mon. Wea. Rev., 111, 479-486.
* Smolarkiewicz, P. (1984) A fully multidimensional positive deﬁnite advection transport algorithm with small implicit diﬀusion. J. Comput. Phys., 54, 325–362.
* Smolarkiewicz, P. and Clark, T. (1986) The multidimensional positive deﬁnite advection transport algorithm: Further development and applications. J. Comput. Phys., 67, 396–438.
* Smolarkiewicz, P. and Grabowski, W. (1990) The multidimensional positive deﬁnite advection transport algorithm: nonoscillatory option. J. Comput. Phys., 86, 355–375.
* Smolarkiewicz, P. and Margolin, L. (1998) MPDATA: A ﬁnite-diﬀerence solver for geophysical ﬂows. J. Comput. Phys., 140, 459–480.
* Smolarkiewicz, P. and Szmelter, J. (2005) MPDATA: An edge-based unstructured-grid formulation. J. Comput. Phys., 206, 624–649.
* Smolarkiewicz, P. K. (2006) Multidimensional positive deﬁnite advection transport algorithm: An overview. Int. J. Numer. Meth. Fluids, 50, 1123–1144.
* Tumolo, G. and Bonaventura, L. (2015) A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction. Q. J. R. Meteorol. Soc., 141, 2582–2601.
* Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A. and Viner, K. (2017) DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models. Geosci. Model Dev., 10, 4477–4509.
* Wicker, L. and Skamarock, W. (2020) An Implicit-Explicit Vertical Transport Scheme for Convection-Allowing Models. Mon. Wea. Rev., 148, 3893–3910.
* Yee, H. (1987) Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys., 68, 151–179.
* Yee, H., Warming, R. and Harten, A. (1985) Implicit total variation diminishing (TVD) schemes for steady-state calculations. J. Comput. Phys., 57, 327–360.
* Zalesak, S. (1979) Fully multidimensional ﬂux-corrected transport algorithms for ﬂuids. J. Comput. Phys., 31, 335–362.
* Zerroukat, M. and Allen, T. (2020) SLIC: A Semi-Lagrangian Implicitly Corrected method for solving the compressible Euler equations. J. Comput. Phys., 421, 109739.