Amemiya, A. and Sato, K. (2016), ‘A new gravity wave parameterization including three-dimensional propagation’, Journal of the Meteorological Society of Japan. Ser. II 94(3), 237–256.
Baines, P. G. (1987), ‘Upstream blocking and airflow over mountains’, Annual Review of Fluid Mechanics 19(1), 75–95.
Berckmans, J., Woollings, T., Demory, M.-E., Vidale, P.-L. and Roberts, M. (2013), ‘Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing’, Atmospheric Science Letters 14(1), 34–40.
Boutle, I. A., Eyre, J. E. J. and Lock, A. P. (2014), ‘Seamless stratocumulus simulation across the turbulent gray zone’, Monthly Weather Review 142(4), 1655 – 1668.
Bretherton, F. P. (1966), ‘The propagation of groups of internal gravity waves in a shear flow’, Quarterly Journal of the Royal Meteorological Society 92(394), 466–480.
Broad, A. S. (1995), ‘Linear theory of momentum fluxes in 3-d flows with turning of the mean wind with height’, Quarterly Journal of the Royal Meteorological Society 121(528), 1891–1902.
Bölöni, G., Kim, Y.-H., Borchert, S. and Achatz, U. (2021), ‘Toward transient subgrid-scale gravity wave representation in atmospheric models. part i: Propagation model including nondissipative wave–mean-flow interactions’, Journal of the Atmospheric Sciences 78(4), 1317 – 1338.
Danielson, J. and Gesch, D. (2018), ‘Global multi-resolution terrain elevation data 2010 (gmted2010)’, U.S. Geo- logical Survey Open-File Report p. 2011–1073.
Doyle, J. D. and Jiang, Q. (2006), ‘Observations and numerical simulations of mountain waves in the presence of directional wind shear’, Quarterly Journal of the Royal Meteorological Society 132(619), 1877–1905.
Dörnbrack, A. (2021), ‘Stratospheric mountain waves trailing across northern europe’, Journal of the Atmospheric Sciences 78(9), 2835–2857.
Eckermann, S. D., Ma, J., Wu, D. L. and Broutman, D. (2007), ‘A three-dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear’, Quarterly Journal of the Royal Meteorological Society 133(629), 1959–1975.
Fritts, D. C. (1984), ‘Gravity wave saturation in the middle atmosphere: A review of theory and observations’, Reviews of Geophysics 22(3), 275–308.
Fritts, D. C., Dong, W., Lund, T. S., Wieland, S. and Laughman, B. (2020), ‘Self-acceleration and instability of gravity wave packets: 3. three-dimensional packet propagation, secondary gravity waves, momentum transport, and transient mean forcing in tidal winds’, Journal of Geophysical Research: Atmospheres 125(3), e2019JD030692. e2019JD030692 2019JD030692.
Guarino, M.-V., Teixeira, M. A. C., Keller, T. L. and Sharman, R. D. (2018), ‘Mountain-wave turbulence in the presence of directional wind shear over the rocky mountains’, Journal of the Atmospheric Sciences 75(4), 1285 –1305.
Hasha, A., Bühler, O. and Scinocca, J. (2008), ‘Gravity wave refraction by three-dimensionally varying winds and the global transport of angular momentum’, Journal of the Atmospheric Sciences 65(9), 2892–2906.
Heim, C., Panosetti, D., Schlemmer, L., Leuenberger, D. and Schär, C. (2020), ‘The influence of the resolution of orography on the simulation of orographic moist convection’, Monthly Weather Review 148(6), 2391–2410.
Jiang, Q. and Doyle, J. D. (2004), ‘Gravity wave breaking over the central alps: Role of complex terrain’, Journal of the Atmospheric Sciences 61(18), 2249–2266.
Kanehama, T., Sandu, I., Beljaars, A., van Niekerk, A. and Lott, F. (2019), ‘Which orographic scales matter most for medium-range forecast skill in the northern hemisphere winter?’, Journal of Advances in Modeling Earth Systems 11(12), 3893–3910.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P. and Gray, L. J. (2015), ‘Stratospheric influence on tropospheric jet streams, storm tracks and surface weather’, Nature Geoscience 8, 433–440.
Kim, Y.-J. and Arakawa, A. (1995), ‘Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model’, Journal of Atmospheric Sciences 52(11), 1875–1902.
Kruse, C. G., Alexander, M. J., Hoffmann, L., van Niekerk, A., Polichtchouk, I., Bacmeister, J. T., Holt, L., Plougonven, R., Šácha, P., Wright, C., Sato, K., Shibuya, R., Gisinger, S., Ern, M., Meyer, C. I. and Stein, O. (2022), ‘Observed and modeled mountain waves from the surface to the mesosphere near the drake passage’, Journal of the Atmospheric Sciences 79(4), 909 – 932.
Kruse, C. G. and Smith, R. B. (2015), ‘Gravity wave diagnostics and characteristics in mesoscale fields’, Journal of the Atmospheric Sciences 72(11), 4372 – 4392.
Kruse, C. G. and Smith, R. B. (2018), ‘Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments’, Journal of the Atmospheric Sciences 75(8), 2721 – 2740.
Lott, F. and Miller, M. J. (1997), ‘A new subgrid-scale orographic drag parametrization: Its formulation and testing’, Quarterly Journal of the Royal Meteorological Society 123(537), 101–127.
McFarlane, N. A. (1987), ‘The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere’, Journal of Atmospheric Sciences 44(14), 1775 – 1800.
Nappo, C. J. (2013), An introduction to atmospheric gravity waves, Academic press.
Palmer, T. N., Shutts, G. J. and Swinbank, R. (1986), ‘Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization’, Quarterly Journal of the Royal Meteorological Society 112(474), 1001–1039.
Phillips, D. S. (1984), ‘Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains’, Journal of Atmospheric Sciences 41(6), 1073 – 1084.
Plougonven, R., de la Cámara, A., Hertzog, A. and Lott, F. (2020), ‘How does knowledge of atmospheric gravity waves guide their parameterizations?’, Quarterly Journal of the Royal Meteorological Society 146(728), 1529–1543.
Polichtchouk, I., van Niekerk, A. and Wedi, N. (2022), ‘Resolved gravity waves in the extra-tropical stratosphere: Effect of horizontal resolution increase from o(10 km) to o(1 km)’, Journal of the Atmospheric Sciences.
Polichtchouk, I., Wedi, N. and Kim, Y.-H. (2022), ‘Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization’, Quarterly Journal of the Royal Meteorological Society 148(742), 233–251.
Sandu, I., van Niekerk, A. and Shepherd, T. e. a. (2019), ‘Impacts of orography on large-scale atmospheric circulation’, npj Clim Atmos Sci 2(10), 2397–3722.
Sato, K., Tateno, S., Watanabe, S. and Kawatani, Y. (2012), ‘Gravity wave characteristics in the southern hemisphere revealed by a high-resolution middle-atmosphere general circulation model’, Journal of the Atmospheric Sciences 69(4), 1378 – 1396.
Scinocca, J. F. and Sutherland, B. R. (2010), ‘Self acceleration in the parameterization of orographic gravity wave drag’, Journal of the Atmospheric Sciences 67(8), 2537 – 2546.
Serafin, S., Rotach, M., Arpagaus, M., Colfescu, I., Cuxart, J., De Wekker, S., Evans, M., Grubiši´c, V., Kalthoff, N., Karl, T., Kirshbaum, D., Lehner, M., Mobbs, S., Paci, A., Palazzi, E., Raudzens Bailey, A., Schmidli, J., Wohlfahrt, G. and Zardi, D. (2020), Multi-scale transport and exchange processes in the atmosphere over mountains - Programme and experiment.
Shutts, G. (1995), ‘Gravity-wave drag parametrization over complex terrain: The effect of critical-level absorption in directional wind-shear’, Quarterly Journal of the Royal Meteorological Society 121(525), 1005–1021.
Shutts, G. J. (1998), ‘Stationary gravity-wave structure in flows with directional wind shear’, Quarterly Journal of the Royal Meteorological Society 124(549), 1421–1442.
Shutts, G. J. and Gadian, A. (1999), ‘Numerical simulations of orographic gravity waves in flows which back with height’, Quarterly Journal of the Royal Meteorological Society 125(559), 2743–2765.
Sigmond, M., Scinocca, J. F. and Kushner, P. J. (2008), ‘Impact of the stratosphere on tropospheric climate change’, Geophysical Research Letters 35(12).
Smith, R. B. (1979), The influence of mountains on the atmosphere, Vol. 21 of Advances in Geophysics, Elsevier, pp. 87–230.
Smith, R. B. (1980), ‘Linear theory of stratified hydrostatic flow past an isolated mountain’, Tellus 32(4), 348–364.
Teixeira, M. A. C. (2014), ‘The physics of orographic gravity wave drag’, Frontiers in Physics 2, 43.
Teixeira, M. A. C. and Miranda, P. M. A. (2009), ‘On the momentum fluxes associated with mountain waves in directionally sheared flows’, Journal of the Atmospheric Sciences 66(11), 3419 – 3433.
Teixeira, M. A. and Yu, C. L. (2014), ‘The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains’, European Journal of Mechanics - B/Fluids 47, 16–31. Enok Palm Memorial Volume.
van Niekerk, A., Sandu, I. and Vosper, S. B. (2018), ‘The circulation response to resolved versus parametrized orographic drag over complex mountain terrains’, Journal of Advances in Modeling Earth Systems 10(10), 2527–2547.
van Niekerk, A., Sandu, I., Zadra, A., Bazile, E., Kanehama, T., Köhler, M., Koo, M.-S., Choi, H.-J., Kuroki, Y., Toy, M. D., Vosper, S. B. and Yudin, V. (2020), ‘Constraining orographic drag effects (coorde): A model comparison of resolved and parametrized orographic drag’, Journal of Advances in Modeling Earth Systems 12(11), e2020MS002160. e2020MS002160 10.1029/2020MS002160.
van Niekerk, A. and Vosper, S. (2021), ‘Towards a more “scale-aware” orographic gravity wave drag parametrization: Description and initial testing’, Quarterly Journal of the Royal Meteorological Society 147(739), 3243–3262.
Van Zyl, J. J. (2001), ‘The shuttle radar topography mission (srtm): a breakthrough in remote sensing of topography’, Acta Astronautica 48(5-12), 559–565.
Wells, H., Vosper, S. B., Ross, A. N., Brown, A. R. and Webster, S. (2008), ‘Wind direction effects on orographic drag’, Quarterly Journal of the Royal Meteorological Society 134(632), 689–701.
Williams, K. D., van Niekerk, A., Best, M. J., Lock, A. P., Brooke, J. K., Carvalho, M. J., Derbyshire, S. H., Dunstan, T. D., Rumbold, H. S., Sandu, I. and Sexton, D. M. H. (2020), ‘Addressing the causes of large-scale circulation error in the met office unified model’, Quarterly Journal of the Royal Meteorological Society 146(731), 2597–2613.
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M. and Thuburn, J. (2014), ‘An inherently mass-conserving semi-implicit semi-lagrangian discretization of the deep-atmosphere global non-hydrostatic equations’, Quarterly Journal of the Royal Meteorological Society 140(682), 1505–1520.
Xu, X., Xue, M., Teixeira, M. A. C., Tang, J. and Wang, Y. (2019), ‘Parameterization of directional absorption of orographic gravity waves and its impact on the atmospheric general circulation simulated by the weather research and forecasting model’, Journal of the Atmospheric Sciences 76(11), 3435 – 3453.