Accessibility navigation


Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates

Orton, G. R. F., Ghosh, S., Alker, L., Sarker, J. C., Pugh, D., Richmond, M. G., Hartl, F. ORCID: https://orcid.org/0000-0002-7013-5360 and Hogarth, G. (2022) Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates. Dalton Transactions, 51 (25). pp. 9748-9769. ISSN 1364-5447

[img]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution Non-commercial.
· Please see our End User Agreement before downloading.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1039/d2dt00419d

Abstract/Summary

[FeFe]-Ase biomimics containing a redox-active ferrocenyl diphosphine have been prepared and their ability to reduce protons and oxidise H2 studied, including 1,1’-bis(diphenylphosphino)ferrocene (dppf) complexes Fe2(CO)4(μ-dppf)(μ-S(CH2)nS) (n = 2, edt; n = 3, pdt) and Fe2(CO)4(μ-dppf)(μ-SAr)2 (Ar = Ph, p-tolyl, p-C6H4NH2), together with the more electron-rich 1,1’-bis(dicyclohexylphosphino)ferrocene (dcpf) complex Fe2(CO)4(μ-dcpf)(μ-pdt). Crystallographic characterisation of four of these show similar overall structures, the diphosphine spanning an elongated Fe–Fe bond (ca. 2.6 Å), lying trans to one sulfur and cis to the second. In solution the diphosphine is flexible, as shown by VT NMR studies, suggesting that Fe2⋯Fe distances of ca. 4.5–4.7 Å in the solid state vary in solution. Cyclic voltammetry, IR spectroelectrochemistry and DFT calculations have been used to develop a detailed picture of electronic and structural changes occurring upon oxidation. In MeCN, Fe2(CO)4(μ-dppf)(μ-pdt) shows two chemically reversible one-electron oxidations occurring sequentially at Fe2 and Fc sites respectively. For other dppf complexes, reversibility of the first oxidation is poor, consistent with an irreversible structural change upon removal of an electron from the Fe2 centre. In CH2Cl2, Fe2(CO)4(μ-dcpf)(μ-pdt) shows a quasireversible first oxidation together with subsequent oxidations suggesting that the generated cation has some stability but slowly rearranges. Both pdt complexes readily protonate upon addition of HBF4·Et2O to afford bridging-hydride cations, [Fe2(CO)4(μ-H)(μ-dcpf)(μ-pdt)]+, species which catalytically reduce protons to generate H2. In the presence of pyridine, [Fe2(CO)4(μ-dppf)(μ-pdt)]2+ catalytically oxidises H2 but none of the other complexes do this, probably resulting from the irreversible nature of their first oxidation. Mechanistic details of both proton reduction and H2 oxidation have been studied by DFT allowing speculative reaction schemes to be developed.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:109946
Publisher:Royal Society of Chemistry

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation