Stabilization of a helical water chain in a metal-organic host of a trinuclear Schiff base complexBiswas, C., Drew, M. G. B. and Ghosh, A. (2008) Stabilization of a helical water chain in a metal-organic host of a trinuclear Schiff base complex. Inorganic Chemistry, 47 (11). pp. 4513-4519. ISSN 0020-1669 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1021/ic8002542 Abstract/SummaryThree heterometallic trinuclear Schiff base complexes, [{GuL(1)(H2O)}(2)Ni(CN)(4)]center dot 4H(2)O (1), [{CuL2(H2O)}(2)Ni(CN)(4)] (2), and [{CuL3(H2O)}(2)Ni(CN)(4)] (3) (HL1 = 7-amino-4-methyl-5-azahept-3-en-2-one, HL2 = 7-methylamino-4-methyl-5-azahept-3-en-2-one, and HL3 = 7-dimethylamino-4-methyl-5-azahept-3-en-2-one), were synthesized. All three complexes were characterized by elemental analysis, IR and UV spectroscopies, and thermal analysis. Two of them (1 and 3) were also characterized by single crystal X-ray crystallography. Complex 1 forms a hydrogen-bonded one-dimensional metal-organic framework that stabilizes a helical water chain into its cavity, but when any of the amine hydrogen atoms of the Schiff base are replaced by methyl groups, as in L 2 and L 3, the water chain, vanishes, showing explicitly the importance of the host-guest H-bonding interactions for the stabilization of a water cluster.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |