Metal complexes of a dipyridine octaazamacrocycle: stability constants, structural and modelling studiesCruz, C., Carvalho, S., Delgado, R., Drew, M.G.B., Felix, V. and Goodfellow, B.J. (2003) Metal complexes of a dipyridine octaazamacrocycle: stability constants, structural and modelling studies. Dalton Transactions (16). pp. 3172-3183. ISSN 1364-5447 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1039/b304381a Abstract/SummaryTwo 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |