(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051. DOI: 10.1021/ja809598r.
(2) NREL chart on record cell efficiencies. https://www.nrel.gov/pv/cell-efficiency.html (accessed June 8, 2023).
(3) Wang, Y.; Lou, H.; Yue, C.-Y.; Lei, X.-W. Applications of halide perovskites in X-ray detection and imaging. CrystEngComm 2022, 24, 2201-2212. DOI: 10.1039/D1CE01575C.
(4) Kim, H.; Zhao, L.; Price, J. S.; Grede, A. J.; Roh, K.; Brigeman, A. N.; Lopez, M.; Rand, B. P.; Giebink, N. C. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 2018, 9, 4893. DOI: 10.1038/s41467-018-07383-8.
(5) Huang, H.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: design, stability, and performance. ACS Energy Lett. 2020, 5, 1107-1123. DOI: 10.1021/acsenergylett.0c00058.
(6) Ono, L. K.; Juarez-Perez, E. J.; Qi, Y. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9, 30197-30246. DOI: 10.1021/acsami.7b06001.
(7) Walsh, A.; elds22; Brivio, F.; Frost, J. M. WMD-group/hybrid-perovskites: Collection 1; Zenodo, April 16, 2019, DOI: 10.5281/zenodo.2641358.
(8) Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276. DOI: doi:10.1107/S0021889811038970.
(9) Lee, J.-W.; Tan, S.; Seok, S. I.; Yang, Y.; Park, N.-G. Rethinking the A cation in halide perovskites. Science 2022, 375, eabj1186. DOI: doi:10.1126/science.abj1186.
(10) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019-9038. DOI: 10.1021/ic401215x.
(11) Cheng, Z.; Lin, J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12, 2646-2662, 10.1039/C001929A. DOI: 10.1039/C001929A.
(12) Francisco-López, A.; Charles, B.; Alonso, M. I.; Garriga, M.; Campoy-Quiles, M.; Weller, M. T.; Goñi, A. R. Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies. J. Phys. Chem. C 2020, 124, 3448-3458. DOI: 10.1021/acs.jpcc.9b10185.
(13) Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)†. J. Phys. Chem. Solids 1990, 51, 1383-1395. DOI: https://doi.org/10.1016/0022-3697(90)90021-7.
(14) Senno, M.; Tinte, S. Mixed formamidinium–methylammonium lead iodide perovskite from first-principles: hydrogen-bonding impact on the electronic properties. Phys. Chem. Chem. Phys. 2021, 23, 7376-7385. DOI: 10.1039/D0CP06713J.
(15) Carignano, M. A.; Kachmar, A.; Hutter, J. Thermal Effects on CH3NH3PbI3 Perovskite from Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. C 2015, 119, 8991-8997. DOI: 10.1021/jp510568n.
(16) Huang, B.; Liu, Z.; Wu, C.; Zhang, Y.; Zhao, J.; Wang, X.; Li, J. Polar or nonpolar? That is not the question for perovskite solar cells. National Science Review 2021, 8. DOI: 10.1093/nsr/nwab094.
(17) Montero-Alejo, A. L.; Menéndez-Proupin, E.; Hidalgo-Rojas, D.; Palacios, P.; Wahnón, P.; Conesa, J. C. Modeling of Thermal Effect on the Electronic Properties of Photovoltaic Perovskite CH3NH3PbI3: The Case of Tetragonal Phase. J. Phys. Chem. C 2016, 120, 7976-7986. DOI: 10.1021/acs.jpcc.6b01013.
(18) Lodeiro, L.; Barría-Cáceres, F.; Jiménez, K.; Contreras, R.; Montero-Alejo, A. L.; Menéndez-Proupin, E. Methodological Issues in First-Principle Calculations of CH3NH3PbI3 Perovskite Surfaces: Quantum Confinement and Thermal Motion. ACS Omega 2020, 5, 29477-29491. DOI: 10.1021/acsomega.0c04420.
(19) Mosconi, E.; De Angelis, F. Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics. ACS Energy Lett. 2016, 1, 182-188. DOI: 10.1021/acsenergylett.6b00108.
(20) Saleh, G.; Biffi, G.; Di Stasio, F.; Martín-García, B.; Abdelhady, A. L.; Manna, L.; Krahne, R.; Artyukhin, S. Methylammonium Governs Structural and Optical Properties of Hybrid Lead Halide Perovskites through Dynamic Hydrogen Bonding. Chem. Mater. 2021, 33, 8524-8533. DOI: 10.1021/acs.chemmater.1c03035.
(21) Varadwaj, P. R.; Varadwaj, A.; Marques, H. M.; Yamashita, K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci. Rep. 2019, 9, 50. DOI: 10.1038/s41598-018-36218-1.
(22) Mitzi, D. B. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc., Dalton Trans. 2001, 1-12, 10.1039/B007070J. DOI: 10.1039/B007070J.
(23) Maity, S.; Verma, S.; Ramaniah, L. M.; Srinivasan, V. Deciphering the Nature of Temperature-Induced Phases of MAPbBr3 by Ab Initio Molecular Dynamics. Chem. Mater. 2022, 34, 10459-10469. DOI: 10.1021/acs.chemmater.2c02453.
(24) Millikan, R. A. On the Elementary Electrical Charge and the Avogadro Constant. Phys. Rev. 1913, 2, 109-143. DOI: 10.1103/PhysRev.2.109.
(25) Svane, K. L.; Forse, A. C.; Grey, C. P.; Kieslich, G.; Cheetham, A. K.; Walsh, A.; Butler, K. T. How Strong Is the Hydrogen Bond in Hybrid Perovskites? J. Phys. Chem. Lett. 2017, 8, 6154-6159. DOI: 10.1021/acs.jpclett.7b03106.
(26) Ibaceta-Jaña, J.; Chugh, M.; Novikov, A. S.; Mirhosseini, H.; Kühne, T. D.; Szyszka, B.; Wagner, M. R.; Muydinov, R. Do Lead Halide Hybrid Perovskites Have Hydrogen Bonds? J. Phys. Chem. C 2022, 126, 16215-16226. DOI: 10.1021/acs.jpcc.2c02984.
(27) Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637-1641. DOI: doi:10.1351/PAC-REC-10-01-02.
(28) Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1619-1636. DOI: doi:10.1351/PAC-REP-10-01-01.
(29) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498-6506. DOI: 10.1021/ja100936w.
(30) Lee, J. H.; Lee, J.-H.; Kong, E.-H.; Jang, H. M. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 2016, 6, 21687. DOI: 10.1038/srep21687.
(31) Menéndez-Proupin, E.; Grover, S.; Montero-Alejo, A. L.; Midgley, S. D.; Butler, K. T.; Grau-Crespo, R. Mixed-anion mixed-cation perovskite (FAPbI3)0.875(MAPbBr3)0.125: an ab initio molecular dynamics study. J. Mater. Chem. A 2022, 10, 9592-9603. DOI: 10.1039/D1TA10860C.
(32) Menéndez-Proupin, E.; Grover, S.; Montero-Alejo, A. L.; Midgley, S. D.; Butler, K. T.; Grau-Crespo, R. Data supporting Mixed-anion mixed-cation perovskite (FAPbI3)0.875(MAPbBr3)0.125: an ab initio molecular dynamics study [Data set]; Zenodo, Nov 19, 2021, DOI: 10.5281/zenodo.8006481.
(33) Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schiffmann, F.; et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103. DOI: 10.1063/5.0007045.
(34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868. DOI: 10.1103/PhysRevLett.77.3865.
(35) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. DOI: 10.1063/1.3382344.
(36) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103-128. DOI: https://doi.org/10.1016/j.cpc.2004.12.014.
(37) VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105. DOI: 10.1063/1.2770708.
(38) Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B: Condens. Matter 1996, 54, 1703-1710. DOI: 10.1103/PhysRevB.54.1703.
(39) Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B: Condens. Matter 1998, 58, 3641-3662. DOI: 10.1103/PhysRevB.58.3641.
(40) Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 2005, 114, 145-152. DOI: 10.1007/s00214-005-0655-y.
(41) Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS—A free analyzer for trajectories from molecular simulation. J. Chem. Phys. 2020, 152, 164105. DOI: 10.1063/5.0005078.
(42) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38. DOI: 10.1016/0263-7855(96)00018-5.
(43) Alder, R. W.; Blake, M. E.; Oliva, J. M. Diaminocarbenes; Calculation of Barriers to Rotation about Ccarbene−N Bonds, Barriers to Dimerization, Proton Affinities, and 13C NMR Shifts. J. Phys. Chem. A 1999, 103, 11200-11211. DOI: 10.1021/jp9934228.
(44) Teunissen, J. L.; Da Pieve, F. Molecular Bond Engineering and Feature Learning for the Design of Hybrid Organic–Inorganic Perovskite Solar Cells with Strong Noncovalent Halogen–Cation Interactions. J. Phys. Chem. C 2021, 125, 25316-25326. DOI: 10.1021/acs.jpcc.1c07295.
(45) Brehm, M.; Sebastiani, D. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. J. Chem. Phys. 2018, 148, 193802. DOI: 10.1063/1.5010342.
(46) Wallace, W. E. Infrared Spectra: Phenol Condensed Phase Spectrum: NIST Mass Spectrometry Data Center, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard. National Institute of Standards and Technology: Gaithersburg MD, 20899, 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C108952&Units=SI&Type=IR-SPEC&Index=1 (accessed 2023 February 1).
(47) Wallace, W. E. Infrared Spectra: Phenol Gas phase spectrum, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W. G. Mallard. National Institute of Standards and Technology: Gaithersburg MD, 20899, 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C108952&Type=IR-SPEC&Index=0 (accessed 2023 February 1).
(48) Thomas, M. Theoretical Modeling of Vibrational Spectra in the Liquid Phase; Springer Cham, 2016. DOI: 10.1007/978-3-319-49628-3.
(49) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09 Rev. B.01; Wallingford, CT, 2009.
(50) Mozur, E. M.; Neilson, J. R. Cation Dynamics in Hybrid Halide Perovskites. Annu. Rev. Mater. Res. 2021, 51, 269-291. DOI: 10.1146/annurev-matsci-080819-012808.
(51) Selig, O.; Sadhanala, A.; Müller, C.; Lovrincic, R.; Chen, Z.; Rezus, Y. L. A.; Frost, J. M.; Jansen, T. L. C.; Bakulin, A. A. Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. J. Am. Chem. Soc. 2017, 139, 4068-4074. DOI: 10.1021/jacs.6b12239.