Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J.,
Forkel, R. et al. (2014) Online coupled regional meteorology chemistry models in europe: current status and prospects.
Atmospheric Chemistry and Physics, 14, 317–398.
Belair, S., Leroyer, S., Seino, N., Spacek, L., Souvanlassy, V. and Paquin-Ricard, D. (2018) Role and impact of the urban envi-
ronment in a numerical forecast of an intense summertime precipitation event over Tokyo. Journal of the Meteorological
Society of Japan. Ser. II, 96A, 77–94.
Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., Edwards, J., Hendry, M., Porson, A., Gedney, N. et al. (2011)
The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes. Geoscientific Model
Development, 4, 677–699.
Blunn, L. P. (2021) Characterising mixing and pollution transport in the urban boundary layer. Ph.D. thesis, University of Reading.
Bohnenstengel, S., Evans, S., Clark, P. A. and Belcher, S. (2011) Simulations of the London urban heat island. Quarterly Journal
of the Royal Meteorological Society, 137, 1625–1640.
Boutle, I., Eyre, J. and Lock, A. (2014) Seamless stratocumulus simulation across the turbulent gray zone. Monthly Weather
Review, 142, 1655–1668.
Boutle, I., Finnenkoetter, A., Lock, A. and Wells, H. (2016) The London Model: forecasting fog at 333 m resolution. Quarterly
Journal of the Royal Meteorological Society, 142, 360–371.
Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., Lee, R. F., Peters, W. D. and Brode, R. W.
(2005) AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary
layer characterization. Journal of Applied Meteorology, 44, 682–693.
Clark, D., Mercado, L., Sitch, S., Jones, C., Gedney, N., Best, M., Pryor, M., Rooney, G., Essery, R., Blyth, E. et al. (2011) The Joint
UK Land Environment Simulator (JULES), model description–Part 2: carbon fluxes and vegetation dynamics. Geoscientific
Model Development, 4, 701–722.
Crawford, B., Grimmond, C. S. B., Ward, H. C., Morrison, W. and Kotthaus, S. (2017) Spatial and temporal patterns of surface–
atmosphere energy exchange in a dense urban environment using scintillometry. Quarterly Journal of the Royal Meteoro-
logical Society, 143, 817–833.
Davies, T., Cullen, M. J., Malcolm, A. J., Mawson, M., Staniforth, A., White, A. and Wood, N. (2005) A new dynamical core
for the Met Office’s global and regional modelling of the atmosphere. Quarterly Journal of the Royal Meteorological Society,
131, 1759–1782.
Page 23 of 27 Quarterly Journal of the Royal Meteorological Society
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
For Peer Review
24 Blunn et al.
Deardorff, J. (1972a) Theoretical expression for the countergradient vertical heat flux. Journal of Geophysical Research, 77,
5900–5904.
Deardorff, J. W. (1970) Preliminary results from numerical integrations of the unstable planetary boundary layer. Journal of
the Atmospheric Sciences, 27, 1211–1213.
— (1972b) Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29,
91–115.
Dosio, A., Vilà-Guerau de Arellano, J., Holtslag, A. A. and Builtjes, P. J. (2003) Dispersion of a passive tracer in buoyancy-and
shear-driven boundary layers. Journal of Applied Meteorology, 42, 1116–1130.
Dosio, A., Guerau de Arellano, J. V., Holtslag, A. A. and Builtjes, P. J. (2005) Relating Eulerian and Lagrangian statistics for the
turbulent dispersion in the atmospheric convective boundary layer. Journal of the Atmospheric Sciences, 62, 1175–1191.
Garratt, J. (1994) The Atmospheric Boundary Layer. Cambridge University Press.
Gopalakrishnan, S. and Avissar, R. (2000) An LES study of the impacts of land surface heterogeneity on dispersion in the
convective boundary layer. Journal of the Atmospheric Sciences, 57, 352–371.
Hagelin, S., Auger, L., Brovelli, P. and Dupont, O. (2014) Nowcasting with the AROME model: first results from the high-
resolution AROME airport. Weather and forecasting, 29, 773–787.
Halliwell, C. (2017) Subgrid turbulence scheme. Unified Model Documentation Paper 28, Met Office.
Hanley, K. E., Barrett, A. I. and Lean, H. W. (2016) Simulating the 20 May 2013 Moore, Oklahoma tornado with a 100-metre
grid-length NWP model. Atmospheric Science Letters, 17, 453–461.
Hanley, K. E., Plant, R. S., Stein, T. H., Hogan, R. J., Nicol, J. C., Lean, H. W., Halliwell, C. and Clark, P. A. (2015) Mixing-length
controls on high-resolution simulations of convective storms. Quarterly Journal of the Royal Meteorological Society, 141,
272–284.
Honnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers, R., Plant, R. S., Shin, H. H., Tomassini, L. and Zhou, B. (2020)
The Atmospheric Boundary Layer and the “Gray Zone” of Turbulence: A critical review. Journal of Geophysical Research:
Atmospheres, e2019JD030317.
Honnert, R., Masson, V. and Couvreux, F. (2011) A diagnostic for evaluating the representation of turbulence in atmospheric
models at the kilometric scale. Journal of the Atmospheric Sciences, 68, 3112–3131.
Ito, J., Niino, H., Nakanishi, M. and Moeng, C.-H. (2015) An extension of the Mellor–Yamada model to the terra incognita zone
for dry convective mixed layers in the free convection regime. Boundary-layer meteorology, 157, 23–43.
Kotthaus, S. and Grimmond, C. S. B. (2014) Energy exchange in a dense urban environment–part 1: Temporal variability of
long-term observations in central london. Urban Climate, 10, 261–280.
Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., Monteiro, A., Hirtl, M., Tarvainen, V., Boy, M.,
Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev, M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R.,
Astitha, M., Kallos, G., Schaap, M., Reimer, E., Jakobs, H. and Eben, K. (2012) A review of operational, regional-scale,
chemical weather forecasting models in Europe. Atmospheric Chemistry and Physics, 12, 1–87.
Lean, H. W., Barlow, J. F. and Clark, P. A. (2022) The use of 100 m scale nwp models to understand differences between
different measures of mixing height in a morning growing clear convective boundary layer over london. Quarterly Journal
of the Royal Meteorological Society, 148, 1983–1995.
Lean, H. W., Barlow, J. F. and Halios, C. H. (2019) The impact of spin-up and resolution on the representation of a clear
convective boundary layer over London in order 100 m grid-length versions of the Met Office Unified Model. Quarterly
Journal of the Royal Meteorological Society, 145, 1674–1689.
Page 24 of 27Quarterly Journal of the Royal Meteorological Society
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
For Peer Review
Blunn et al. 25
Leroyer, S., Bélair, S., Husain, S. Z. and Mailhot, J. (2014) Subkilometer numerical weather prediction in an urban coastal area:
A case study over the Vancouver metropolitan area. Journal of Applied Meteorology and Climatology, 53, 1433–1453.
Leroyer, S., Bélair, S., Souvanlasy, V., Vallée, M., Pellerin, S. and Sills, D. (2022) Summertime assessment of an urban-scale
numerical weather prediction system for Toronto. Atmosphere, 13, 1030.
Lilly, D. K. (1962) On the numerical simulation of buoyant convection. Tellus, 14, 148–172.
— (1968) Models of cloud-topped mixed layers under a strong inversion. Quarterly Journal of the Royal Meteorological Society,
94, 292–309.
Lock, A., Brown, A., Bush, M., Martin, G. and Smith, R. (2000) A new boundary layer mixing scheme. Part I: Scheme description
and single-column model tests. Monthly Weather Review, 128, 3187–3199.
Lock, A., Edwards, J. and Boutle, I. (2016) The parametrization of boundary layer processes. Unified Model Documentation
Paper 24, Met Office.
Luhar, A. K. and Britter, R. E. (1989) A random walk model for dispersion in inhomogeneous turbulence in a convective
boundary layer. Atmospheric Environment, 23, 1911–1924.
McHugh, C., Carruthers, D. and Edmunds, H. (1997) ADMS-urban: an air quality management system for traffic, domestic
and industrial pollution. International Journal of Environment and Pollution, 8, 666–674.
Mellor, G. L. and Yamada, T. (1982) Development of a turbulence closure model for geophysical fluid problems. Reviews of
Geophysics, 20, 851–875.
Miao, S. and Chen, F. (2008) Formation of horizontal convective rolls in urban areas. Atmospheric Research, 89, 298–304.
Monin, A. and Yaglom, A. (1975) Statistical fluid mechanics: mechanics of turbulence. MIT Press.
Oke, T. R., Mills, G. and Voogt, J. (2017) Urban climates. Cambridge University Press.
Paradisi, P., Cesari, R., Mainardi, F., Maurizi, A. and Tampieri, F. (2001) A generalized Fick’s law to describe non-local transport
effects. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 275–279.
Pergaud, J., Masson, V., Malardel, S. and Couvreux, F. (2009) A parameterization of dry thermals and shallow cumuli for
mesoscale numerical weather prediction. Boundary-layer meteorology, 132, 83–106.
Pleim, J. E. (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description
and testing. Journal of Applied Meteorology and Climatology, 46, 1383–1395.
Pleim, J. E. and Chang, J. S. (1992) A non-local closure model for vertical mixing in the convective boundary layer. Atmospheric
Environment. Part A. General Topics, 26, 965–981.
Porson, A., Clark, P. A., Harman, I., Best, M. and Belcher, S. (2010) Implementation of a new urban energy budget scheme
in the MetUM. Part I: Description and idealized simulations. Quarterly Journal of the Royal Meteorological Society, 136,
1514–1529.
Ronda, R., Steeneveld, G., Heusinkveld, B., Attema, J. and Holtslag, A. (2017) Urban finescale forecasting reveals weather
conditions with unprecedented detail. Bulletin of the American Meteorological Society, 98, 2675–2688.
Salesky, S. T., Chamecki, M. and Bou-Zeid, E. (2017) On the nature of the transition between roll and cellular organization in
the convective boundary layer. Boundary-Layer Meteorology, 163, 41–68.
Schmidt, H. and Schumann, U. (1989) Coherent structure of the convective boundary layer derived from large-eddy simula-
tions. Journal of Fluid Mechanics, 200, 511–562.
Page 25 of 27 Quarterly Journal of the Royal Meteorological Society
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
For Peer Review
26 Blunn et al.
Siebesma, A. P., Soares, P. M. and Teixeira, J. (2007) A combined eddy-diffusivity mass-flux approach for the convective
boundary layer. Journal of the atmospheric sciences, 64, 1230–1248.
Smagorinsky, J. (1963) General circulation experiments with the primitive equations: 1. The basic experiment. Monthly
Weather Review, 91, 99–164.
Stockie, J. M. (2011) The mathematics of atmospheric dispersion modeling. SIAM Review, 53, 349–372.
Tang, Y., Lean, H. W. and Bornemann, J. (2013) The benefits of the Met Office variable resolution NWP model for forecasting
convection. Meteorological Applications, 20, 417–426.
Taylor, G. I. (1922) Diffusion by continuous movements. Proceedings of the London Mathematical Society, 2, 196–212.
Tennekes, H. (1979) The exponential lagrangian correlation function and turbulent diffusion in the inertial subrange. Atmo-
spheric Environment, 13, 1565–1567.
Thomson, D. (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid
Mechanics, 180, 529–556.
Thomson, D. and Wilson, J. (2012) History of Lagrangian stochastic models for turbulent dispersion. Lagrangian Modeling of
the Atmosphere, 200, 19–36.
Warhaft, Z. (2000) Passive scalars in turbulent flows. Annual Review of Fluid Mechanics, 32, 203–240.
Webster, H. and Thomson, D. (2018) NAME – Model Description. User Guide for NAME, UK Met Office.
Weil, J. (1990) A diagnosis of the asymmetry in top-down and bottom-up diffusion using a Lagrangian stochastic model.
Journal of the Atmospheric Sciences, 47, 501–515.
Willis, G. and Deardorff, J. (1976) A laboratory model of diffusion into the convective planetary boundary layer. Quarterly
Journal of the Royal Meteorological Society, 102, 427–445.
— (1979) Laboratory observations of turbulent penetrative-convection planforms. Journal of Geophysical Research: Oceans,
84, 295–302.
Willis, G. E. and Deardorff, J. W. (1981) A laboratory study of dispersion from a source in the middle of the convectively mixed
layer. Atmospheric Environment, 15, 109–117.
Wilson, J. D. and Sawford, B. L. (1996) Review of lagrangian stochastic models for trajectories in the turbulent atmosphere.
Boundary-Layer Meteorology, 78, 191–210.
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M. et al.
(2014) An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-
hydrostatic equations. Quarterly Journal of the Royal Meteorological Society, 140, 1505–1520.
Wyngaard, J. C. (2004) Toward numerical modeling in the “Terra Incognita”. Journal of the Atmospheric Sciences, 61, 1816–
1826.
Wyngaard, J. C. and Brost, R. A. (1984) Top-down and bottom-up diffusion of a scalar in the convective boundary layer. Journal
of the Atmospheric Sciences, 41, 102–112.