Probing the thermal resistance of solid-liquid interfaces in nanofluids with molecular dynamicsCarrillo-Berdugo, I., Navas, J. and Grau-Crespo, R. ORCID: https://orcid.org/0000-0001-8845-1719 (2024) Probing the thermal resistance of solid-liquid interfaces in nanofluids with molecular dynamics. The Journal of Chemical Physics, 160 (1). 014706. ISSN 1089-7690
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1063/5.0177616 Abstract/SummaryThe significance of the interfacial thermal resistance in the thermal conductivity of nanofluids is not well understood, in part because of the absence of measurements of this quantity in nanofluids of interest. Here we study the interfacial thermal resistance for metal-oil nanofluids of interest as heat-transfer fluids for concentrating solar power, using density functional theory and molecular dynamics simulations. Insights on the role of chemical interactions in the interfacial thermal resistance are revealed. The results presented here showcase a general picture in which the stronger the chemical interactions between species at interfaces, the lower the associated interfacial thermal resistance. The implications towards nanofluid design are discussed. We show that, for this important family of metal-oil nanofluids, the interfacial thermal resistance values are low enough so that it is possible to afford a reduction in particle size, minimising stability and rheology issues while still offering enhancement in the effective thermal conductivity with respect to the base fluid.
DownloadsDownloads per month over past year
1 S. U. S. Choi, and J. A. Eastman, "Enhancing Thermal Conductivity of Fluids with Nanoparticles", ASME 1995 International Mechanical Engineering Congress & Exposition (California, USA, Year), 231, 99-106.
2 E. Bellos, and C. Tzivadinis, "A review of concentrating solar thermal collectors with and without nanofluids", J. Therm. Anal. Calorim. 135, 763-786 (2019).
3 E. A. Chavez Panduro, F. Finotti, G. Largiller, and K. Y. Lervåg, "A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors", Appl. Them. Eng. 211, 118346 1-21 (2022).
4 IEA, "Technology Roadmap - Concentrating Solar Power" (IEA, Paris, France, 2010).
5 D. R. Rajendran, E. G. Sundaram, P. Jawahar, S. Sivakumar, O. Mahian, and E. Bellos, "Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design", J. Therm. Anal. Calorim. 140, 33-51 (2019).
6 M. E. Mondejar, M. Regidor, J. Krafczyk, C. Ihmels, B. Schmid, G. M. Kontogeorgis, and F. Hagling, "An open-access database of the thermophysical properties of nanofluids", J. Mol. Liq. 333, 115140 1-7 (2021).
7 G. Tertsinidou, M. J. Assael, and W. A. Wakeham, "The Apparent Thermal Conductivity of Liquids Containing Solid Particles of Nanometer Dimensions: A Critique", Int. J. Thermophys. 36, 1367-1395 (2015).
8 K. D. Antoniadis, G. J. Tertsinidou, M. J. Assael, and W. A. Wakeham, "Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied", Int. J. Thermophys. 37, 78 1-22 (2016).
9 M. J. Assael, K. D. Antoniadis, W. A. Wakeham, and X. Zhang, "Potential applications of nanofluids for heat transfer", Int. J. Heat Mass Transfer 138, 597-607 (2019).
10 P. Keblinski, R. Prasher, and J. Eapen, "Thermal Conductance of Nanofluids: Is the Controversy Over?", J. Nanopart. Res. 10, 1089–1097 (2008).
11 Z. Hashin, and S. Shtrikman, "A variational approach to the theory of the effective magnetic permeability of multiphase materials", J. Appl. Phys. 33, 3125–3131 (1962).
12 P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, "Mechanisms of Heat Flow in Suspension of Nano-sized Particles (Nanofluids)", Int. J. Heat Mass Transfer 45, 855-863 (2002).
13 I. Mugica, and S. Poncet, "A Critical Review of the Most Popular Mathematical Models for Nanofluid Thermal Conductivity", J. Nanopart. Res. 22, 113 1-19 (2020).
14 D. P. H. Hasselman, "Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the “Anomalous” Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?", Int. J. Thermophys. 39, 109 1-8 (2018).
15 M. J. Assael, and W. A. Wakeham, "Comments on “Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the “Anomalous” Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?”", Int. J. Thermophys. 40, 59 1-15 (2019).
16 D. P. H. Hasselman, "Response to Comments by M. J. Assael and W. A. Wakeham on: D. P. H. Hasselman, “Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the ‘Anomalous’ Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?”", Int. J. Thermophys. 40, 60 1-5 (2019).
17 E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, "Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory", Phys. Rev. E 76, 061203 1-16 (2007).
18 L. Xue, P. Keblinski, S. R. Phillpot, S. U.-S. Choi, and J. A. Eastman, "Two Regimes of Thermal Resistance at a Liquid–Solid Interface", J. Chem. Phys. 118, 337-339 (2003).
19 L. Xue, P. Keblinski, S. R. Phillpot, S. U.-S. Choi, and J. A. Eastman, "Effect of liquid layering at the liquid–solid interface on thermal transport", Int. J. Heat Mass Transfer 47, 4277-4284 (2004).
20 J. Eapen, J. Li, and S. Yip, "Mechanism of Thermal Transport in Dilute Nanocolloids", Phys. Rev. Lett. 98, 028302 1-4 (2007).
21 J. Eapen, J. Li, and S. Yip, "Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures", Phys. Rev. E 76, 062501 1-4 (2007).
22 W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, "Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids", Int. J. Heat Mass Transfer 51, 1431-1438 (2008).
23 G. Balasubramanian, S. Banerjee, and I. K. Puri, "Unsteady nanoscale thermal transport across a solid-fluid interface", J. Appl. Phys. 104, 064306 1-4 (2008).
24 J. M. P. França, C. A. Nieto de Castro, and A. A. H. Pádua, "Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials", Phys. Chem. Chem. Phys. 19, 17075-17087 (2017).
25 A. Khodayari, M. Fasano, M. B. Bigdeli, S. Mohammadnejad, E. Chiavazzo, and P. Asinari, "Effect of interfacial thermal resistance and nanolayer on estimates of effective thermal conductivity of nanofluids", Case Studies in Thermal Engineering 12, 454-461 (2018).
26 M. R. Hasan, T. Q. Vo, and B. H. Kim, "Manipulating thermal resistance at the solid–fluid interface through monolayer deposition", RSC Adv. 9, 4948-4956 (2019).
27 M. Masuduzzaman, and B. H. Kim, "Scale Effects in Nanoscale Heat Transfer for Fourier’s Law in a Dissimilar Molecular Interface", ACS Omega 5, 26527–26536 (2020).
28 G. Kresse, and J. Hafner, "Ab initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium", Phys. Rev. B 47, 14251-14269 (1994).
29 G. Kresse, and J. Furthmüller, "Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set", Comput. Mater. Sci. 6, 15-50 (1996).
30 G. Kresse, and J. Furthmüller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set", Phys. Rev. B 54, 11169-11186 (1996).
31 G. Kresse, D. Vogtenhuber, M. Marsman, M. Kaltak, F. Karsai, and M. Schlipf, Vienna Ab-initio Simulation Package (VASP), version 6.3.1 (2022). https://www.vasp.at
32 G. Mills, H. Jónsson, and G. K. Schenter, "Reversible Work Transition State Theory: Application to Dissociative Adsorption of Hydrogen", Surf. Sci. 324, 305-337 (1995).
33 H. Jónsson, G. Mills, and K. W. Jacobsen, "Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions", in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, 1998), 385-404.
34 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett. 77, 3865 3865-3868 (1996).
35 J. P. Perdew, K. Burke, and M. Ernzerhof, "Erratum: Generalized Gradient Approximation Made Simple", Phys. Rev. Lett. 78, 1396 1396 (1997).
36 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu", J. Chem. Phys. 132, 154104 (2010).
37 S. Grimme, S. Ehrlich, and L. Goerigk, "Effect of the damping function in dispersion corrected density functional theory", J. Comp. Chem. 32, 1456-1465 (2011).
38 J. A. Garrido Torres, B. Ramberger, H. A. Früchtl, R. Schaub, and G. Kresse, "Adsorption Energies of Benzene on Close Packed Transition Metal Surfaces Using the Random Phase Approximation", Phys. Rev. Mater. 1, 060803 1-5 (2017).
39 G. Kresse, and J. Hafner, "Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition Elements", J. Phys.: Condens. Matter 6, 8245-8257 (1994).
40 G. Kresse, and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method", Phys. Rev. B 59, 1758-1775 (1999).
41 H. J. Monkhorst, and J. D. Pack, "Special Points for Brillouin-Zone Integrations", Phys. Rev. B 13, 5188-5192 (1976).
42 H. J. Monkhorst, and J. D. Pack, ""Special points for Brillouin-zone integrations" – A Reply", Phys. Rev. B 16, 1748-1749 (1977).
43 M. Methfessel, and A. T. Paxton, "High-Precision Sampling for Brillouin-Zone Integration in Metals", Phys. Rev. B 40, 3616-3621 (1989).
44 A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool", Modelling Simul. Mater. Sci. Eng. 18, 015012 (2009).
45 J. D. Gale, "Empirical Potential Derivation for Ionic Materials", Philos. Mag. B 73, 3-19 (1996).
46 J. D. Gale, "GULP: A Computer Program for the Symmetry-adapted Simulation of Solids", J. Chem. Soc., Faraday Trans. 93, 629-637 (1997).
47 J. D. Gale, and A. L. Rohl, "The General Utility Lattice Program (GULP)", Mol. Simul. 29, 291-341 (2003).
48 J. D. Gale, "GULP: Capabilities and Prospects", Z. Krist. 220, 552-554 (2005).
49 J. D. Gale, General Utility Lattice Program (GULP), version 6.1.0 (2022). http://gulp.curtin.edu.au/gulp/
50 S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J. Comput. Phys. 117, 1-19 (1995).
51 A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, T. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, "LAMMPS - A Flexible Simulation Tool for Particle-based Materials Modeling at the Atomic, Meso, and Continuum Scales", Comp. Phys.Comm. 271, 10817 (2022).
52 S. Plimpton, A. Thompson, S. Moore, A. Kohlmeyer, and R. Berger, Large Atomic/Molecular Massively Parallel Simulator (LAMMPS), version 29Sep2021 (2021). http://lammps.sandia.gov
53 A. I. Jewett, Z. Zhuang, and J.-E. Shea, "Moltemplate a Coarse-Grained Model Assembly Tool", Biophys. J. 104, 169a (2013).
54 A. Jewett, Moltemplate, version 2.20.4 (2022). https://www.moltemplate.org
55 C. D. Barret, and R. L. Carino, "The MEAM parameter calibration tool: an explicit methodology for hierarchical bridging between ab initio and atomistic scales", Integrating Materials and Manufacturing Innovation 5, 177-191 (2016).
56 W. L. Jorgensen, and J. Tirado-Rives, "Potential Energy Functions for Atomic-level Simulations of Water and Organic and Biomolecular Systems", Proc. Natl. Acad. Sci. U.S.A. 102, 6665-6670 (2005).
57 L. S. Dodda, J. Z. Vilseck, J. Tirado-Rives, and W. L. Jorgensen, "1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations", J. Phys. Chem. B 121, 3864-3870 (2017).
58 L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, and W. L. Jorgensen, "LigParGen Web Server: An Automatic OPLS-AA Parameter Generator for Organic Ligands", Nucleic Acids Res. 45, 331-336 (2017).
59 R. W. Hockney, and J. W. Eastwood, "Computer Simulation Using Particles" (Taylor & Francis Group, Abingdon, UK, 1988), 1st edn.
60 L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Phys. Rev. A 159, 98-103 (1967).
61 S. Nosé, "A Molecular Dynamics Method for Simulations in the Canonical Ensemble", Mol. Phys. 52, 255-268 (1984).
62 S. Nosé, "A Unified Formulation of the Constant Temperature Molecular Dynamics Methods", J. Chem. Phys. 81, 511-519 (1984).
63 W. G. Hoover, "Canonical Dynamics: Equilibrium Phase-space Distributions", Phys. Rev. A 1985, 1695-1697 (1985).
64 W. G. Hoover, "Constant-Pressure Equations of Motion", Phys. Rev. A 34, 2499-2500 (1986).
65 F. Müller-Plathe, "A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity", J. Chem. Phys. 106, 6082 1-4 (1997).
66 C. Morin, D. Simon, and P. Sautet, "Chemisorption of Benzene on Pt(111), Pd(111), and Rh(111) Metal Surfaces: A Structural and Vibrational Comparison from First Principles", J. Phys. Chem. B 108, 5653-5665 (2004).
67 A. Bilić, J. R. Reimers, N. S. Hush, R. C. Hoft, and M. J. Ford, "Adsorption of Benzene on Copper, Silver, and Gold Surfaces", J. Chem. Theory Comput. 2, 1093–1105 (2006).
68 E. Abad, Y. J. Dappe, J. I. Martínez, F. Flores, and J. Orterga, "C6H6/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction", J. Chem. Phys. 134, 044701 1-8 (2011).
69 T. S. Chwee, and M. B. Sullivan, "Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory", J. Chem. Phys. 137, 134703 1-8 (2012).
70 W. Liu, J. Carrasco, B. Santra, A. Michaelides, M. Scheffler, and A. Tkatchenko, "Benzene Adsorbed on Metals: Concerted Effect of Covalency and van der Waals Bonding", Phys. Rev. B 86, 245405 1-6 (2012).
71 W. Liu, V. G. Ruiz, G.-X. Zhang, B. Santra, X. Ren, M. Scheffler, and A. Tkatchenko, "Structure and Energetics of Benzene Adsorbed on Transition-Metal Surfaces: Density-Functional Theory with van der Waals Interactions Including Collective Substrate Response", New J. Phys. 15, 053046 1-27 (2013).
72 H. Yildirim, T. Greber, and A. Kara, "Trends in Adsorption Characteristics of Benzene on Transition Metal Surfaces: Role of Surface Chemistry and van der Waals Interactions", J. Phys. Chem. C 117, 20572-20583 (2013).
73 J. Carrasco, W. Liu, A. Michaelides, and A. Tkatchenko, "Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces", J. Chem. Phys. 140, 084704 1-10 (2014).
74 C. Morin, D. Simon, and P. Sautet, "Density-Functional Study of the Adsorption and Vibration Spectra of Benzene Molecules on Pt(111)", J. Phys. Chem. B 107, 2995–3002 (2003).
75 S. J. Jenkins, "Aromatic adsorption on metals via first-principles density functional theory", Proc. R. Soc. A 465, 1-28 (2009).
76 A. Berg, C. Peter, and K. Johnson, "Evaluation and Optimization of Interface Force Fields for Water on Gold Surfaces", J. Chem. Theory Comput. 13, 5610–5623 (2017).
77 J.-P. Jalkanen, and F. Zerbetto, "Interaction Model for the Adsorption of Organic Molecules on the Silver Surface", J. Phys. Chem. B 110, 5595–5601 (2006).
78 A. Y. Galashev, K. P. Katin, and M. M. Maslov, "Morse parameters for the interaction of metals with graphene and silicene", Phys. Lett. A 383, 252-258 (2019).
79 J. M. Ortiz-Roldan, S. R. G. Balestra, R. Bueno-Perez, S. Calero, E. Garcia-Perez, C. R. A. Catlow, A. R. Ruiz-Salvador, and S. Hamad, "Understanding the stability and structural properties of ordered nanoporous metals towards their rational synthesis", Proc. R. Soc. A 478, 20220201 1-21 (2022).
80 B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, and Y. Xia, "Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions", Adv. Funct. Mater. 19, 189-200 (2009).
81 S. Alosious, S. K. Kannam, S. P. Sathian, and B. D. Todd, "Kapitza resistance at water–graphene interfaces", J. Chem. Phys. 152, 224703 1-9 (2020).
82 S. Alosious, S. K. Kannam, S. P. Sathian, and B. D. Todd, "Nanoconfinement Effects on the Kapitza Resistance at Water–CNT Interfaces", Langmuir 37, 2355-2361 (2021).
83 M. R. Azizian, E. Doroodchi, and B. Moghtaderi, in 14th International Heat Transfer ConferenceWashington, DC, USA, 2011), pp. 659-665.
84 M. Milanese, F. Iacobazzi, G. Colangelo, and A. de Risi, "An investigation of layering phenomenon at the liquid–solid interface in Cu and CuO based nanofluids", Int J Heat Mass Trans 103, 564-571 (2016).
85 I. Carrillo-Berdugo, R. Grau-Crespo, D. Zorrilla, and J. Navas, "Interfacial molecular layering enhances specific heat of nanofluids: evidence from molecular dynamics", J. Mol. Liq. 325, 115217 1-8 (2020).
86 I. Carrillo-Berdugo, S. Midgley, D. Zorrilla, R. Grau-Crespo, and J. Navas, "Understanding the Specific Heat Enhancement in Metal-containing Nanofluids for Thermal Energy Storage: Experimental and Ab-initio evidence for a Strong Interfacial Layering Effect", ACS Appl. Energy Mater. 3, 9246–9256 (2020).
87 F. Sofos, T. Karakasidis, and A. Liakopoulos, "Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls", Int. J. Heat Mass Transfer 52, 735-743 (2009).
88 A. E. Giannakopoulos, F. Sofos, T. Karakasidis, and A. Liakopoulos, "A quasi-continuum multi-scale theory for self-diffusion and fluid ordering in nanochannel flows", Microfluidics and Nanofluidics 17, 1011–1023 (2014).
89 D. P. H. Hasselman, and L. F. Johnson, "Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance", J. Compos. Mater. 21, 508-515 (1987).
90 C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, "Effective thermal conductivity of particulate composites with interfacial thermal resistance", J. Appl. Phys. 81, 6692-6699 (1997).
91 I. Carrillo-Berdugo, J. Sampalo-Guzmán, R. Grau-Crespo, D. Zorrilla, and J. Navas, "Interface chemistry effects in nanofluids: experimental and computational study of oil-based nanofluids with gold nanoplates", J. Mol. Liq. 362, 119762 1-10 (2022). University Staff: Request a correction | Centaur Editors: Update this record |