Alexander, M. J., M. Geller, C. McLandress, S. Polavarapu, P. Preusse, F. Sassi, K. Sato, S. Eckermann, M. Ern, A. Hertzog, Y. Kawatani, M. Pulido, T. A. Shaw, M. Sigmond, R.
Vincent, and S. Watanabe, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637
Andrews, D.G., J. R. Holton, C. B. Leovy, 1987: Middle Atmosphere Dynamics. New York, NY, USA: Academic Press: 489pp.
Cámara, A. d. l., F. Lott, V. Jewtoukoff, R. Plougonven, and A. Hertzog, 2016: On the Gravity Wave Forcing during the Southern Stratospheric Final Warming in LMDZ. J. Atmos. Sci., 73, 3213-3226, https://doi.org/10.1175/JAS-D-15-0377.1
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083
Chen, P., and W. A. Robinson, 1992: Propagation of Planetary Waves between the Troposphere and Stratosphere. J. Atmos. Sci., 49, 2533-2545, https://doi.org/10.1175/1520- 0469(1992)049<2533:POPWBT>2.0.CO;2
Choi, H. J., and S. Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos., 120, 12445–12457, https://doi.org/10.1002/2015JD024230
Choi, H. J., S. J. Choi, M. S. Koo, J. E. Kim, Y. C. Kwon, and S. Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res. Atmos., 122, 10669–10678, https://doi.org/10.1002/2017JD026696
Cohen, N. Y., P. G. Edwin, and B. Oliver, 2013: Compensation between resolved and unresolved wave driving in the strato- sphere: Implications for downward control. J. Atmos. Sci., 70, 3780–3798, https://doi.org/10.1175/JAS-D-12-0346.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828
Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm Cross Sections for the Troposphere. J. Atmos. Sci., 37, 2600–2616, https://doi.org/10.1175/1520- 0469(1980)037<2600:EPCSFT>2.0.CO;2
Ehard, B., and Coauthors, 2017: Vertical propagation of large-amplitude mountain waves in the vicinity of the polar night jet. J. Geophys. Res. Atmos., 122, 1423–1436, https://doi.org/10.1002/2016JD025621
Eichinger, R., H. Garny, P. Šácha, J. Danker, S. Dietmüller, and S. Oberländer-Hayn, 2020: Effects of missing gravity waves on stratospheric dynamics. Climate Dynamics, 54, https://doi.org/10.1007/s00382-020-05166-w
Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106
Garcia, R. R., A. K. Smith, D. E. Kinnison, A. de la Cámara, and D. J. Murphy, 2017: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. J. Atmos. Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1
Hájková, D., and P. Šácha, 2023: Parameterized orographic gravity wave drag and dynamical effects in CMIP6 models. Clim Dyn., https://doi.org/10.1007/s00382-023-07021-0
Hasha, A., O. Bühler, and J. Scinocca, 2008: Gravity Wave Refraction by Three-Dimensionally Varying Winds and the Global Transport of Angular Momentum. J. Atmos. Sci., 65, 2892–2906, https://doi.org/10.1175/2007JAS2561.1
Hu, D., Y. Guo, and Z. Guan, 2019: Recent Weakening in the Stratospheric Planetary Wave Intensity in Early Winter. Geophysical Research Letters, 46, 3953-3962, https://doi.org/10.1029/2019GL082113
Jiang, Q., A. Reinecke, and J. D. Doyle, 2014: Orographic wave drag over the Southern Ocean: A linear theory perspective. J. Atmos. Sci., 71, 4235–4252, https://doi.org/10.1175/JAS-D-14-0035.1
Kalisch, S., P. Preusse, M. Ern, S. D. Eckerman, and M. Riese, 2014: Differences in gravity wave drag between realistic oblique and assumed vertical propagation. J. Geophys. Res. Atmos., 119, 10,081-010,099, https://doi.org/10.1002/2014JD021779
Kim, Y. J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902, https://doi.org/10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2
Kim, Y. J., and J. D. Doyle, 2005: Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 1893–1921, https://doi.org/10.1256/qj.04.160
Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430–444,
https://doi.org/10.1175/1520-0493(1983)111%3C0430:AUBCPI%3E2.0.CO;2
Kruse, C. G., R. B. Smith, and S. D. Eckermann, 2016: The midlatitude lower-stratospheric mountain wave “valve layer”. J. Atmos. Sci., 73, 5081–5100, https://doi.org/10.1175/JAS-
D-16-0173.1
Kruse, C. G., and coauthors, 2022: Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage. J. Atmos. Sci, 79, 909-932. https://doi.org/10.1175/jas-d-21-0252.1
Li, R., X. Xu, X. Xu, T. G. Shepherd, and Y. Wang, 2023: Importance of orographic gravity waves over the Tibetan Plateau on the spring rainfall in East Asia. Science China Earth Sciences, 66, 1–9, https://doi.org/10.1007/s11430-023-1204-6
Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. Atmos., 86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707
Lott, F., and M. Miller, 1997: A new sub-grid orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101–127, https://doi.org/10.1002/qj.49712353704
Lu, Y., T. Wu, X. Xu, L. Zhang, and M. Chu, 2020: Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation
Model. Atmosphere., 11, 576, https://doi.org/10.3390/atmos11060576
McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775–
1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
McLandress, C., S. Polavaparu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802–818, https://doi.org/10.1175/JAS-D-11-0159.1
Miranda, P. M. A., and I. N. James, 1992: Non-linear three-dimensional effects on the wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081,
https://doi.org/10.1002/qj.49711850803
Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039, https://doi.org/10.1002/qj.49711247406
Polichtchouk, I., A. van Niekerk, and N. Wedi, 2022: Resolved gravity waves in the extra-tropical stratosphere: Effect of horizontal resolution increase from O (10 km) to O (1 km). J. Atmos. Sci., 79, 473-486, https://doi.org/10.1175/JAS-D-22-0138.1
Ribstein, B., and U. Achatz, 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4-D ray-tracing gravity-wave parameterization. J. Geophys. Res. Space Physics, 121, 8936-8950, https://doi.org/10.1002/2016JA022478
Šácha, P., A. Kuchar, R. Eichinger, P. Pisoft, C. Jacobi, and H. E. Rieder, 2021: Diverse dynamical response to orographic gravity wave drag hotspots—A zonal mean perspective. Geophysical Research Letters., 48, https://doi.org/10.1029/2021GL093305
Sandu, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. G. Shepherd, and A. Zadra, 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation. J. Adv. Model. Earth Syst., 8, 196–211, https://doi.org/10.1002/2015MS000564
Sandu, I., A. van Niekerk, T. G. Shepherd, S. B. Vosper, A. Zadra, J. Bacmeister, and Coauthors, 2019: Impacts of orography on large‐ scale atmospheric circulation. npj Climate and Atmospheric Science., 10, https://doi.org/10.1038/s41612-019-0065-9
Sato, K., S. Tateno, S. Watanabe, and Y. Kawatani, 2012: Gravity Wave Characteristics in the Southern Hemisphere Revealed by a High-Resolution Middle-Atmosphere General
Circulation Model. J. Atmos. Sci., 69, 1378–1396, https://doi.org/10.1175/JAS-D-11-0101.1
Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 2353–2393, https://doi.org/10.1002/qj.49712656802
Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253
Shutts, G., 1995: Gravity-wave drag parameterization over complex terrain: The effect of critical- level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121, 1005–1021, https://doi.org/10.1002/qj.49712152504
Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 1434–1446, https://doi.org/ 10.1175/2009JCLI3167.1
Skamarock, W. C., J. B. Klemp, J. Dudhia, and Coauthors, 2008: A description of the Advanced Research WRF version 3. https://doi.org/10.5065/D68S4MVH
Skamarock, W. C., J. B. Klemp, M. G. Duda, and Coauthors, 2012: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105, https://doi.org/10.1175/MWR-D-11-00215.1
Song, I. S., and H. Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 1204–1224, https://doi.org/10.1175/2007JAS2369.1
Teixeira, M. A. C., P. M. A. Miranda, and R. M. Cardoso, 2008: Asymptotic gravity wave drag expression for non-hydrostatic rotating flow over a ridge. Quart. J. Roy. Meteor. Soc., 134, 271–276, https://doi.org/10.1002/qj.196
van Niekerk, A., and coauthors, 2020: COnstraining ORographic Drag Effects (COORDE): A Model Comparison of Resolved and Parametrized Orographic Drag. J. Adv. Model. Earth Sys., 12, e2020MS002160. https://doi.org/10.1029/2020MS002160
van Niekerk, A., S. B. Vosper, M. A. C. Teixeira, 2023: Accounting for the three-dimensional nature of mountain waves: parametrizing partial critical level filtering. Quart. J. Roy. Meteor. Soc., 149, 515-536, https://doi.org/10.1002/qj.4421
Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989– 2010, https://doi.org/10.1256/qj.02.133
White, R. H., J. M. Wallace, and D. S. Battisti, 2021: Revisiting the role of mountains in the northern hemisphere winter atmospheric circulation. J. Atmos. Sci., 78, 2221–2235, https://doi.org/10.1175/JAS-D-20-0300.1.
Xu, X., J. Song, Y. Wang, and M. Xue, 2017a: Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian Beam
Approximation. J. Atmos. Sci., 74, 1783–1798, https://doi.org/10.1175/JAS-D-16-0275.1
Xu, X., Y. Wang, M. Xue, and K. Zhu, 2017b: Impacts of Horizontal Propagation of Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower Mesosphere. J. Geophys. Res. Atmos., 122, 11,301-311,312, https://doi.org/10.1002/2017JD027528
Xu, X., Y. Tang, Y. Wang, and M. Xue, 2018: Directional absorption of mountain waves and its influence on the wave momentum transport in the Northern Hemisphere. J. Geophy. Res. Atmos., 123, 2640-2654, https://doi.org/10.1002/2017JD027968
Xu, X., M. Xue, M. A. C. Teixeira, J. Tang, and Y. Wang, 2019: Parameterization of directional absorption of orographic gravity waves and its impact on the atmospheric general circulation simulated by the Weather Research and Forecasting model. J. Atmos. Sci., 76, 3435−3453, https://doi.org/10.1175/JAS-D-18-0365.1
Xu, X., M. A. C. Teixeira, M. Xue, Y. Lu, and J. Tang, 2020: Impacts of wind profile shear and curvature on the parameterized orographic gravity wave stress in the Weather Research and Forecasting model. Q. J. R. Meteorol. Soc., 146, 3086–3100. https://doi.org/10.1002/qj.3828
Xu, X., R. Li, M. A. C. Teixeira, and Y. Lu, 2021: On the momentum flux of vertically-propagating orographic gravity waves excited in nonhydrostatic flow over three-dimensional orography. J. Atmos. Sci., 78, 1807-1822, https://doi.org/10.1175/JAS-D-20-0370.1
Xue, M., and A. J. Thorpe, 1991: A mesoscale numerical model using the nonhydrostatic sigma-coordinate equations: Model experiments with dry mountain flows. Mon. Wea. Rev., 119, 1168−1185, https://doi.org/10.1175/1520-0493(1991)119<1168:AMNMUT>2.0.CO;2
Zängl, G., 2003: Orographic gravity waves close to the nonhydrostatic limit of vertical propagation. J. Atmos. Sci., 60, 2045−2063, https://doi.org/10.1175/1520-
0469(2003)060<2045:OGWCTT>2.0.CO;2
Zhang, R., X. Xu, and Y. Wang, 2020: Impacts of subgrid orographic drag on the summer monsoon circulation and precipitation in East Asia. J. Geophy. Res. Atmos., 125, 13,
https://doi.org/10.1029/2019JD032337
Zhou, X., A. Beljaars, Y. Wang, B. Huang, C. Lin, Y. Chen, and H. Wu, 2017: Evaluation of WRF simulations with different selections of subgrid orographic drag over the Tibetan Plateau. J. Geophy. Res. Atmos., 122, 9759–9772, https://doi.org/10.1002/2017JD027212