Accessibility navigation


Sodium dodecyl sulfate micelles: accurate analysis of small-angle x-ray scattering data through form factor and atomistic molecular dynamics modelling

Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926 and Castelletto, V. (2024) Sodium dodecyl sulfate micelles: accurate analysis of small-angle x-ray scattering data through form factor and atomistic molecular dynamics modelling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 696. 134394. ISSN 1873-4359

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

3MB
[img] Text - Accepted Version
· Restricted to Repository staff only

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.colsurfa.2024.134394

Abstract/Summary

The structure of micelles of sodium dodecyl sulfate (SDS) is probed via analysis of small-angle x-ray scattering (SAXS) data with the aim to fit the data over an extended wavenumber q range. This provides detailed information on the micelle shape, which can be described as a polydisperse triaxial ellipsoidal core-shell structure according to model form factor fitting. This model was necessary to fit the data over a wide q range, which is not accurately represented by simpler models such as biaxial ellipsoidal core-shell structures. Data for SDS (at fixed concentration) in a NaCl concentration series revealed increasing structure factor effects with decreasing salt concentration. This reflects decreased charge screening on the headgroups. The structure factor could be modelled using a simple hard sphere structure factor. The analysis of form factor was complemented by atomistic molecular dynamics (MD) simulations, starting from an unbiased initial configuration of a defined number of molecules in a box. The MD configurations were used to calculate the form factor using the software CRYSOL (for small-angle scattering analysis of solution scattering, traditionally for proteins, here for micelles) and accounting for the boundary layer hydration effects. Good agreement with experimental data was found for systems with association numbers close to p = 60. This association number is consistent with that obtained from analysis of the form factor (in the case where structure factor effects could be neglected) and from model-free analysis of the forward scattering intensity. It is also in agreement with prior literature and our findings in regard to form factor parameters are also compared to previous reports.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:116677
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation