Metallo-organic domino reactions: C-H versus C-C bond breakingTocher, D.A., Drew, M.G.B., Nag, S., Pal, P.K. and Datta, D. (2007) Metallo-organic domino reactions: C-H versus C-C bond breaking. Chemistry- A European Journal, 13 (8). pp. 2230-2237. ISSN 0947-6539 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/chem.200600199 Abstract/SummaryHL and MeL are prepared by condensing benzil dihydrazone with 2-formylpyridine and 2-acetylpyridine, respectively, in 1:2 molar proportions. While in a reaction with [Ru-(C6H6)Cl-2](2), HL yields the cation [Ru(C6H6){5,6-diphenyl-3-(pyridin-2-yl)- 1,2,4-triazine}Cl](+), MeL gives the cation [Ru(C6H6)(MeL)Cl](+). Both the cations are isolated as their hexafluorophosphate salts and characterised by X-ray crystallography. In the case of HL, double domino electrocyclic/elimination reactions are found to occur. The electrocyclic reaction occurs in a C=N-N=C-C=N fragment of HL and the elimination reaction involves breaking of a C-H bond of HL. Density functional calculations on model complexes indicate that the identified electrocyclic reaction is thermochemically as well as kinetically feasible for both HL and MeL in the gas phase. For a double domino reaction, similar to that operative in HL, to occur for MeL, breaking of a C-C bond would be required in the elimination step. Our model calculations show the energy barrier for this elimination step to be much higher (329.1 kJ mol(-1)) for MeL than that for HL (96.3 kJ mol(-1)). Thus, the domino reaction takes place for HL and not for MeL. This accounts for the observed stability of [Ru(C6H6)-(MeL)Cl](+) under the reaction conditions employed.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |