[1] S. B. Pope, Turbulent Flows (Cambridge University Press, 2000).
[2] D. K. Bisset, J. C. R. Hunt, and M. M. Rogers, The turbulent/non-turbulent interface bounding a far wake, J. Fluid Mech. 451, 383 (2002).
[3] J. Westerweel, C. Fukushima, J. M. Pedersen, and J. C. R.
Hunt, Momentum and scalar transport at the turbulent/nonturbulent interface of a jet, J. Fluid Mech. 631, 199 (2009).
[4] C. B. da Silva, J. C. R. Hunt, I. Eames, and J. Westerweel, Interfacial layers between regions of different turbulent intensity, Annu. Rev. Fluid Mech. 46, 567 (2014).
[5] C. B. da Silva, R. J. N. dos Reis, and J. C. F. Pereira, The intense vorticity structures near the turbulent/non-turbulent interface a jet, J. Fluid Mech. 685, 165 (2011).
[6] T. Watanabe, R. Jaulino, R. Taveira, C. B. da Silva, K. Nagata, and Y. Sakai, Role of an isolated eddy near the turbulent/nonturbulent interface layer, Phys. Rev. Fluids 2, 094607 (2017).
[7] M. M. Neamtu-Halic, D. Krug, G. Haller, and M. Holzner, Lagrangian coherent structures and entrainment near the turbulent/non-turbulent interface of a gravity current, J. Fluid Mech. 877, 824 (2019).
[8] J.Westerweel, C. Fukushima, J.M. Pedersen, and J. C. R. Hunt, Mechanics of the turbulent-nonturbulent interface of a jet, Phys. Rev. Lett. 95, 174501 (2005).
[9] R. R. Taveira and C. B. da Silva, Kinetic energy budgets near the turbulent/nonturbulent interface in jets, Phys. Fluids 25, 015114 (2013).
[10] O. M. Phillips, The irrotational motion outside a free turbulent boundary, Proc. Camb. Phil. Soc. 51, 220 (1955).
[11] P. A. Davidson, Turbulence, an Introduction for Scientists and Engineers (Oxford University Press, 2004).
[12] D. J. Carruthers and J. C. R. Hunt, Velocity fluctuations near an interface between a turbulent region and a stably stratified layer, J. Fluid Mech. 165, 475 (1986).
[13] P. Sagaut and C. Cambon, Homogeneous Turbulence Dynamics, 2nd ed. (Springer, 2018).
[14] M. A. C. Teixeira and C. B. da Silva, Turbulence dynamics near a turbulent/non-turbulent interface, J. FluidMech. 695, 257 (2012).
[15] R. M. Thomas, Conditional sampling and other measurements in a plane turbulent wake, J. Fluid Mech. 57, 549 (1973).
[16] G. Fabris, Conditional sampling study of the turbulent wake of a cylinder. Part 1, J. Fluid Mech. 94, 673 (1979).
[17] R. A. Antonia, D. A. Shah, and L.W. B. Browne, The organized motion outside a turbulent wake, Phys. Fluids 30, 2040 (1987).
[18] I. Wygnanski and H. E. Fiedler, The two-dimensional mixing region, J. Fluid Mech. 41, 327 (1970).
[19] L. J. S. Bradbury, The structure of a self-preserving turbulent plane jet, J. Fluid Mech. 23, 31 (1965).
[20] M. Sunyach and J. Mathieu, Zone de melange d’un jet plan fluctuations induites dans le cone a potentiel intermittence, Int. J. Heat Mass Transf. 12, 1679 (1969).
[21] P. Bradshaw, Irrotational fluctuations near a turbulent boundary layer, J. Fluid Mech. 27, 209 (1967).
[22] L. S. G. Kovasznay, V. Kibens, and R. F. Blackwelder, Largescale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech. 41, 283 (1970).
[23] P. G. Saffman, The large-scale structure of homogeneous turbulence, J. Fluid Mech. 27, 581 (1967).
[24] G. Birkhoff, Fourier synthesis of homogeneous turbulence, Commun. Pure Appl. Math. 7, 19 (1954).
[25] G. L. Eyink and D. J. Thomson, Free decay of turbulence and breakdown of self-similarity, Phys. Fluids 12, 477 (2000).
[26] J. C. Vassilicos, An infinity of possible invariants for decaying homogeneous turbulence, Phys. Lett. A 375, 1010 (2011).
[27] M. Oberlack and A. Zieleniewicz, Statistical symmetries and its impact on new decay modes and integral invariants of decaying turbulence, J. Turbul. 14, 4 (2013).
[28] R. P. Xavier, M. A. C. Teixeira, and C. B. da Silva, Asymptotic scaling laws for the irrotational motions bordering a turbulent region, J. Fluid Mech. 918, A3 (2021).
[29] J. C. R. Hunt and J. M. R. Graham, Free-stream turbulence near plane boundaries, J. Fluid Mech. 84, 209 (1978).
[30] M. A. C. Teixeira and S. E. Belcher, Dissipation of shear free turbulence near boundaries, J. Fluid Mech. 422, 167 (2000).
[31] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,
Spectral Methods in Fluid Dynamics (Springer-Verlag, 1987).
[32] J. H. Williamson, Low-storage Runge-Kutta schemes, J. Comput. Phys. 35, 48 (1980).
[33] T. Ishida, P. A. Davidson, and Y. Kaneda, On the decay of isotropic turbulence, J. Fluid Mech. 564, 455 (2006).
[34] G. K. Batchelor, The Theory ofHomogeneous Turbulence (Cambridge University Press, 1953).
[35] B. Perot and P. Moin, Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence, J. Fluid Mech. 295, 199 (1995).
[36] A. Cimarelli, G. Cocconi, B. Frohnapfel, and E. De Angelis, Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface, Phys. Fluids 27, 125106 (2015).
[37] T. S. Silva, M. Zecchetto, and C. B. da Silva, The scaling of the turbulent/non-turbulent interface at high Reynolds numbers, J. Fluid Mech. 843, 156 (2018).
[38] M. Zecchetto and C. B. da Silva, Universality of smallscale motions within the turbulent/non-turbulent interface layer, J. Fluid Mech. 916, A9 (2021).
[39] R. R. Taveira, J. S. Diogo, D. C. Lopes, and C. B. da Silva, Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet, Phys. Rev. E 88, 043001 (2013).
[40] https://macc.fccn.pt.
[41] http://www.lca.uc.pt.