Grey-zone simulations of shallow-to-deep convection transition using dynamic subgrid-scale turbulence modelsEfstathiou, G. A., Plant, B. ORCID: https://orcid.org/0000-0001-8808-0022 and Chow, F. K. (2024) Grey-zone simulations of shallow-to-deep convection transition using dynamic subgrid-scale turbulence models. Quarterly Journal of the Royal Meteorological Society. ISSN 1477-870X (In Press)
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/qj.4817 Abstract/SummaryIn this study, we examine the ability of two dynamic turbulence closure models to simulate the diurnal development of convection and the transition from dry to shallow cumuli and then to deep convection. The dynamic models are compared to the conventional Smagorinsky scheme at a range of cloud-resolving and grey-zone resolutions. The dynamic schemes include the Lagrangian-averaged, scale-dependent dynamic Smagorinsky model and a Lagrangian-averaged, dynamic mixed model. The conventional Smagorinsky model fails to reproduce the shallow convection stage beyond the large-eddy simulation (LES) regime, continuously building up the convective available potential energy which eventually leads to an unrealistic deep convection phase. The dynamic Smagorinsky model significantly improves the representation of shallow and deep convection; however, it exhibits issues similar to the conventional scheme at coarser resolutions. In contrast, the dynamic mixed model closely follows the LES results across the range of sub-kilometer simulations. This is achieved by the combined effect of an adaptive length scale and the inclusion of the Leonard terms which can produce counter-gradient fluxes through the backscatter of energy from the subgrid to the resolved scales and enable appropriate non-local contributions. A further sensitivity test on the inclusion of the Leonard terms on all hydrometeor fluxes reveals the strong interaction between turbulent transport and microphysics and the possible need for further optimisation of the dynamic mixed model coefficients together with the microphysical representation.
Anderson, R. and Meneveau, C. (1999) Effects of the similarity model in finite-difference LES of isotropic turbulence using
503 a Lagrangian Dynamic Mixed Model. Flow, Turbulence and Combustion, 62, 201–225. URL: https://doi.org/10.1023/A:
504 1009967228812.
505 Bardina, J., Ferziger, J. H. and Reynolds, W. C. (1983) Improved turbulence models based on large eddy simulation of ho506
mogeneous, incompressible turbulent flows. Tech. Rep. TF-19, Stanford University. URL: https://ntrs.nasa.gov/api/
507 citations/19840009460/downloads/19840009460.pdf.
508 Beare, R. (2014) A length scale defining partially-resolved boundary-layer turbulence simulations. Boundary-LayerMeteorology,
509 151, 39–55. URL: http://dx.doi.org/10.1007/s10546-013-9881-3.
510 Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A. K., Köhler, M., Miller, M. and Redelsperger, J.-L. (2004) The simulation
511 of the diurnal cycle of convective precipitation over land in a global model. Quarterly Journal of the Royal Meteorological
512 Society, 130, 3119–3137. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.03.103.
Page 17 of 35 Quarterly Journal of the Royal Meteorological Society
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
For Peer Review
Efstathiou et al. 17
Betts, A. K., Fuentes, J. D., Garstang, M. and Ball, J. H. 513 (2002) Surface diurnal cycle and boundary layer structure over rondônia
514 during the rainy season. Journal of Geophysical Research: Atmospheres, 107, LBA 32–1–LBA 32–14. URL: https://agupubs.
515 onlinelibrary.wiley.com/doi/abs/10.1029/2001JD000356.
516 Böing, S. J., Jonker, H. J. J., Siebesma, A. P. and Grabowski,W.W. (2012) Influence of the subcloud layer on the development
517 of a deep convective ensemble. Journal of the Atmospheric Sciences, 69, 2682 – 2698. URL: https://journals.ametsoc.
518 org/view/journals/atsc/69/9/jas-d-11-0317.1.xml.
519 Bou-Zeid, E., Meneveau, C. and Parlange, M. (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation
520 of complex turbulent flows. Physics of Fluids, 17. URL: http://scitation.aip.org/content/aip/journal/pof2/17/2/10.
521 1063/1.1839152.
522 Boutle, I. A., Eyre, J. E. J. and Lock, A. P. (2014) Seamless stratocumulus simulation across the turbulent gray zone. Monthly
523 Weather Review, 142, 1655–1668. URL: http://dx.doi.org/10.1175/MWR-D-13-00229.1.
524 Brown, A. R. (1999) Large-eddy simulation and parametrization of the effects of shear on shallow cumulus convection.
525 Boundary-Layer Meteorology, 91, 65–80. URL: https://doi.org/10.1023/A:1001836612775.
526 Brown, A. R., Cederwall, R. T., Chlond, A.,Duynkerke, P.G., Golaz, J.-C., Khairoutdinov,M., Lewellen,D. C., Lock, A. P.,MacVean,
527 M. K., Moeng, C.-H., Neggers, R. A. J., Siebesma, A. P. and Stevens, B. (2002) Large-eddy simulation of the diurnal cycle
528 of shallow cumulus convection over land. Quarterly Journal of the Royal Meteorological Society, 128, 1075–1093. URL:
529 https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/003590002320373210.
530 Brown, N., Lepper, A.,Weiland,M., Hill, A., Shipway, B. andMaynard, C. (2015) A directive based hybrid met office nerc cloud
531 model. In Proceedings of the Second Workshop on Accelerator Programming Using Directives, WACCPD ’15. New York, NY,
532 USA: Association for Computing Machinery. URL: https://doi.org/10.1145/2832105.2832115.
533 Bryan, G. H., Wyngaard, J. C. and Fritsch, J. M. (2003) Resolution requirements for the simulation of deep moist convection.
534 Monthly Weather Review, 131, 2394 – 2416. URL: https://journals.ametsoc.org/view/journals/mwre/131/10/1520-
535 0493_2003_131_2394_rrftso_2.0.co_2.xml.
536 Chakraborty, A. (2010) The skill of ECMWF medium-range forecasts during the year of tropical convection 2008. Monthly
537 Weather Review, 138, 3787 – 3805. URL: https://journals.ametsoc.org/view/journals/mwre/138/10/2010mwr3217.1.
538 xml.
539 Chow, F. K., Schär, C., Ban, N., Lundquist, K. A., Schlemmer, L. and Shi, X. (2019) Crossing multiple gray zones in the transition
540 from mesoscale to microscale simulation over complex terrain. Atmosphere, 10. URL: https://www.mdpi.com/2073-4433/
541 10/5/274.
542 Clark, P., Roberts, N., Lean, H., Ballard, S. P. and Charlton-Perez, C. (2016) Convection-permitting models: a step-change in
543 rainfall forecasting. Meteorological Applications, 23, 165–181. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/
544 10.1002/met.1538.
545 Efstathiou, G. A. (2023) Dynamic subgrid turbulence modeling for shallow cumulus convection simulations beyond les resolu546
tions. Journal of the Atmospheric Sciences, 80, 1519 – 1545. URL: https://journals.ametsoc.org/view/journals/atsc/
547 80/6/JAS-D-22-0132.1.xml.
548 Efstathiou, G. A., Beare, R. J., Osborne, S. and Lock, A. P. (2016) Grey zone simulations of the morning convective boundary
549 layer development. Journal of Geophysical Research: Atmospheres, 121, 4769–4782. URL: http://dx.doi.org/10.1002/
550 2016JD024860. 2016JD024860.
551 Efstathiou, G. A., Plant, R. S. and Bopape, M. M. (2018) Simulation of an evolving convective boundary layer using a scale552
dependent dynamic smagorinsky model at near-gray-zone resolutions. Journal of Applied Meteorology and Climatology, 57,
553 2197–2214. URL: https://journals.ametsoc.org/view/journals/apme/57/9/jamc-d-17-0318.1.xml.
Quarterly Journal of the Royal Meteorological Society Page 18 of 35
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
For Peer Review
18 Efstathiou et al.
Field, P. R., Hill, A., Shipway, B., Furtado, K., Wilkinson, J., Miltenberger, A., Gordon, 554 H., Grosvenor, D. P., Stevens, R. and
555 VanWeverberg, K. (2023) Implementation of a double moment cloud microphysics scheme in the UK Met Office regional
556 numerical weather prediction model. Quarterly Journal of the RoyalMeteorological Society, n/a, 1–37. URL: https://rmets.
557 onlinelibrary.wiley.com/doi/abs/10.1002/qj.4414.
558 Fiori, E., Parodi, A. and Siccardi, F. (2010) Turbulence closure parameterization and grid spacing effects in simulated supercell
559 storms. Journal of the Atmospheric Sciences, 67, 3870–3890. URL: https://journals.ametsoc.org/view/journals/atsc/
560 67/12/2010jas3359.1.xml.
561 Germano,M. (1986) A proposal for a redefinition of the turbulent stresses in the filtered Navier–Stokes equations. The Physics
562 of Fluids, 29, 2323–2324. URL: https://aip.scitation.org/doi/abs/10.1063/1.865568.
563 Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991) A dynamic subgrid-scale eddy viscosity model. Physics of Fluids
564 A, 3, 1760–1765. URL: http://scitation.aip.org/content/aip/journal/pofa/3/7/10.1063/1.857955.
565 Goger, B., Rotach, M. W., Gohm, A., Fuhrer, O., Stiperski, I. and Holtslag, A. A. M. (2018) The impact of three-dimensional
566 effects on the simulation of turbulence kinetic energy in a major alpine valley. Boundary-Layer Meteorology, 168, 1–27.
567 URL: https://doi.org/10.1007/s10546-018-0341-y.
568 Grabowski,W.W. (2023)Daytime convective development over land: The role of surface forcing. Quarterly Journal of the Royal
569 Meteorological Society, 149, 2800–2819. URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4532.
570 Grabowski, W. W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C., Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao,
571 W.-K., Wong, R., Wu, X. and Xu, K.-M. (2006) Daytime convective development over land: A model intercomparison
572 based on LBA observations. Quarterly Journal of the Royal Meteorological Society, 132, 317–344. URL: https://rmets.
573 onlinelibrary.wiley.com/doi/abs/10.1256/qj.04.147.
574 Griewank, P. J., Heus, T., Lareau, N. P. and Neggers, R. A. J. (2020) Size dependence in chord characteristics from simulated
575 and observed continental shallow cumulus. Atmospheric Chemistry and Physics, 20, 10211–10230. URL: https://acp.
576 copernicus.org/articles/20/10211/2020/.
577 Gu, J.-F., Plant, R. S., Holloway, C. E., Jones, T. R., Stirling, A., Clark, P. A., Woolnough, S. J. and Webb, T. L. (2020) Evaluation
578 of the bulk mass flux formulation using large-eddy simulations. Journal of the Atmospheric Sciences, 77, 2115 – 2137. URL:
579 https://journals.ametsoc.org/view/journals/atsc/77/6/JAS-D-19-0224.1.xml.
580 Hanley, K., Whitall, M., Stirling, A. and Clark, P. (2019) Modifications to the representation of subgrid mixing in kilometre581
scale versions of the unified model. Quarterly Journal of the Royal Meteorological Society, 145, 3361–3375. URL: https:
582 //rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3624.
583 Hanley, K. E., Plant, R. S., Stein, T. H. M., Hogan, R. J., Nicol, J. C., Lean, H. W., Halliwell, C. and Clark, P. A. (2015) Mixing584
length controls on high-resolution simulations of convective storms. Quarterly Journal of the Royal Meteorological Society,
585 141, 272–284. URL: http://dx.doi.org/10.1002/qj.2356.
586 Honnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers, R., Plant, R. S., Shin, H. H., Tomassini, L. and Zhou, B. (2020)
587 The atmospheric boundary layer and the “gray zone” of turbulence: A critical review. Journal of Geophysical Research:
588 Atmospheres, 125, e2019JD030317. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD030317.
589 E2019JD030317 10.1029/2019JD030317.
590 Honnert, R., Masson, V. and Couvreux, F. (2011) A diagnostic for evaluating the representation of turbulence in atmospheric
591 models at the kilometric scale. Journal of the Atmospheric Sciences, 68, 3112–3131. URL: http://dx.doi.org/10.1175/JAS592
D-11-061.1.
593 Huang, H.-Y., Stevens, B. and Margulis, S. A. (2008) Application of dynamic subgrid-scale models for large-eddy simulation of
594 the daytime convective boundary layer over heterogeneous surfaces. Boundary-Layer Meteorology, 126, 327–348. URL:
595 http://dx.doi.org/10.1007/s10546-007-9239-9.
Page 19 of 35 Quarterly Journal of the Royal Meteorological Society
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
For Peer Review
Efstathiou et al. 19
Ito, J., Hayashi, S., Hashimoto, A., Ohtake, H., Uno, F., Yoshimura, H., Kato, 596 T. and Yamada, Y. (2017) Stalled improvement in a
597 numerical weather prediction model as horizontal resolution increases to the sub-kilometer scale. SOLA, 13, 151–156.
598 Khairoutdinov,M. and Randall, D. (2006) High-resolution simulation of shallow-to-deep convection transition over land. Jour599
nal of the Atmospheric Sciences, 63, 3421 – 3436. URL: https://journals.ametsoc.org/view/journals/atsc/63/12/
600 jas3810.1.xml.
601 Kidd, C., Dawkins, E. and Huffman, G. (2013) Comparison of precipitation derived from the ecmwf operational forecast model
602 and satellite precipitation datasets. Journal of Hydrometeorology, 14, 1463 – 1482. URL: https://journals.ametsoc.org/
603 view/journals/hydr/14/5/jhm-d-12-0182_1.xml.
604 Kirkpatrick, M. P., Ackerman, A. S., Stevens, D. E. and Mansour, N. N. (2006) On the application of the dynamic Smagorinsky
605 model to large-eddy simulations of the cloud-topped atmospheric boundary layer. Journal of the Atmospheric Sciences, 63,
606 526–546. URL: https://doi.org/10.1175/JAS3651.1.
607 Krishna, U. V. M., Das, S. K., Deshpande, S. M. and Pandithurai, G. (2021) Physical processes controlling the diurnal cycle
608 of convective storms in the Western Ghats. Scientific Reports, 11, 14103. URL: https://doi.org/10.1038/s41598-021-
609 93173-0.
610 Krishnamurti, T. N., Gnanaseelan, C. and Chakraborty, A. (2007) Prediction of the diurnal change using a multimodel su611
perensemble. Part I: Precipitation. Monthly Weather Review, 135, 3613 – 3632. URL: https://journals.ametsoc.org/
612 view/journals/mwre/135/10/mwr3446.1.xml.
613 Kurowski,M. J., Suselj, K., Grabowski,W.W. and Teixeira, J. (2018) Shallow-to-deep transition of continentalmoist convection:
614 Cold pools, surface fluxes, and mesoscale organization. Journal of the Atmospheric Sciences, 75, 4071 – 4090. URL:
615 https://journals.ametsoc.org/view/journals/atsc/75/12/jas-d-18-0031.1.xml.
616 Kurowski,M. J. and Teixeira, J. (2018) A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer.
617 Journal of the Atmospheric Sciences, 75, 675–690. URL: https://journals.ametsoc.org/view/journals/atsc/75/2/jas618
d-16-0296.1.xml.
619 Lancz, D., Szintai, B. and Honnert, R. (2018) Modification of a parametrization of shallow convection in the grey zone using a
620 mesoscale model. Boundary-Layer Meteorology, 169, 483–503. URL: https://doi.org/10.1007/s10546-018-0375-1.
621 Lang, S., Tao,W.-K., Simpson, J., Cifelli, R., Rutledge, S., Olson,W. andHalverson, J. (2007) Improving simulations of convective
622 systems from trmm lba: Easterly and westerly regimes. Journal of the Atmospheric Sciences, 64, 1141 – 1164. URL:
623 https://journals.ametsoc.org/view/journals/atsc/64/4/jas3879.1.xml.
624 Lilly, D. K. (1967) The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific
625 Computing Symp. on Environmental Sciences, 195.
626 — (1992) A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A: Fluid Dynamics, 4, 633–
627 635. URL: http://dx.doi.org/10.1063/1.858280.
628 Liu, S., Meneveau, C. and Katz, J. (1994) On the properties of similarity subgrid-scale models as deduced from measurements
629 in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119.
630 Mason, P. J. and Thomson, D. J. (1992) Stochastic backscatter in large-eddy simulations of boundary layers. Journal
631 of Fluid Mechanics, 242, 51–78. URL: https://www.cambridge.org/core/article/stochastic-backscatter-in-large632
eddy-simulations-of-boundary-layers/8DA0CAA88C4B9B841FA8887E12685312.
633 Matheou, G., Chung, D., Nuijens, L., Stevens, B. and Teixeira, J. (2011) On the fidelity of large-eddy simulation of shallow
634 precipitating cumulus convection. Monthly Weather Review, 139, 2918 – 2939. URL: https://journals.ametsoc.org/
635 view/journals/mwre/139/9/2011mwr3599.1.xml.
636 Meneveau, C., Lund, T. S. and Cabot, W. H. (1996) A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid
637 Mechanics, 319, 353–385.
Quarterly Journal of the Royal Meteorological Society Page 20 of 35
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
For Peer Review
20 Efstathiou et al.
Moeng, C.-H., Sullivan, P. P., Khairoutdinov, M. 638 F. and Randall, D. A. (2010) A mixed scheme for subgrid-scale fluxes in cloud639
resolving models. Journal of the Atmospheric Sciences, 67, 3692 – 3705. URL: https://journals.ametsoc.org/view/
640 journals/atsc/67/11/2010jas3565.1.xml.
641 Nakanishi, M. and Niino, H. (2009) Development of an improved turbulence closure model for the atmospheric boundary
642 layer. Journal of the Meteorological Society of Japan. Ser. II, 87, 895–912.
643 Petch, J. C., Brown, A. R. and Gray, M. E. B. (2002) The impact of horizontal resolution on the simulations of convective
644 development over land. Quarterly Journal of the Royal Meteorological Society, 128, 2031–2044. URL: https://rmets.
645 onlinelibrary.wiley.com/doi/abs/10.1256/003590002320603511.
646 Porté-Agel, F.,Meneveau, C. and Parlange,M. B. (2000) A scale-dependent dynamic model for large-eddy simulation: applica647
tion to a neutral atmospheric boundary layer. Journal of FluidMechanics, 415, 261–284. URL: http://journals.cambridge.
648 org/article_S0022112000008776.
649 Rai, R. K., Berg, L. K., Kosović, B., Haupt, S. E., Mirocha, J. D., Ennis, B. L. and Draxl, C. (2019) Evaluation of the impact of
650 horizontal grid spacing in terra incognita on coupled mesoscale–microscale simulations using the wrf framework. Monthly
651 Weather Review, 147, 1007 – 1027. URL: https://journals.ametsoc.org/view/journals/mwre/147/3/mwr-d-18-0282.
652 1.xml.
653 Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D.,
654 Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S. and Wernli, H. (2020)
655 Kilometer-scale climate models: Prospects and challenges. Bulletin of the American Meteorological Society, 101, E567 –
656 E587. URL: https://journals.ametsoc.org/view/journals/bams/101/5/bams-d-18-0167.1.xml.
657 Shi, X., Chow, F. K., Street, R. L. and Bryan, G. H. (2019) Key elements of turbulence closures for simulating deep convec658
tion at kilometer-scale resolution. Journal of Advances in Modeling Earth Systems, 11, 818–838. URL: https://agupubs.
659 onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001446.
660 Shi, X., Hagen, H. L., Chow, F. K., Bryan, G. H. and Street, R. L. (2018) Large-eddy simulation of the stratocumulus-capped
661 boundary layer with explicit filtering and reconstruction turbulence modeling. Journal of the Atmospheric Sciences, 75,
662 611–637. URL: https://journals.ametsoc.org/view/journals/atsc/75/2/jas-d-17-0162.1.xml.
663 Shin, H. H. and Hong, S.-Y. (2015) Representation of the subgrid-scale turbulent transport in convective boundary layers at
664 gray-zone resolutions. MonthlyWeather Review, 143, 250–271. URL: http://dx.doi.org/10.1175/MWR-D-14-00116.1.
665 Simon, J. S., Zhou, B., Mirocha, J. D. and Chow, F. K. (2019) Explicit filtering and reconstruction to reduce grid dependence
666 in convective boundary layer simulations using WRF-LES. Monthly Weather Review, 147, 1805 – 1821. URL: https:
667 //journals.ametsoc.org/view/journals/mwre/147/5/mwr-d-18-0205.1.xml.
668 Singh, S., Kalthoff, N. andGantner, L. (2021) Sensitivity of convective precipitation tomodel grid spacing and land-surface reso669
lution in ICON. Quarterly Journal of the RoyalMeteorological Society, 147, 2709–2728. URL: https://rmets.onlinelibrary.
670 wiley.com/doi/abs/10.1002/qj.4046.
671 Smagorinsky, J. (1963) General circulation experiments with the primitive equations. Monthly Weather Review, 91, 99–164.
672 URL: http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
673 Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.-C., Jiang, H.,
674 Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Müller, F., Stevens, D. E., Whelan, E. and Zhu, P. (2005)
675 Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Monthly Weather Review, 133,
676 1443 – 1462. URL: https://journals.ametsoc.org/view/journals/mwre/133/6/mwr2930.1.xml.
677 Strauss, C., Ricard, D., Lac, C. and Verrelle, A. (2019) Evaluation of turbulence parametrizations in convective clouds and their
678 environment based on a large-eddy simulation. Quarterly Journal of the RoyalMeteorological Society, 145, 3195–3217. URL:
679 https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3614.
Page 21 of 35 Quarterly Journal of the Royal Meteorological Society
123456789
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
For Peer Review
Efstathiou et al. 21
Verrelle, A., Ricard, D. and Lac, C. (2015) 680 Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal
681 resolution and turbulence parametrization. Quarterly Journal of the Royal Meteorological Society, 141, 433–448. URL:
682 https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2363.
683 — (2017) Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale reso684
lution. Monthly Weather Review, 145, 3947 – 3967. URL: https://journals.ametsoc.org/view/journals/mwre/145/10/
685 mwr-d-16-0404.1.xml.
686 Wyngaard, J. C. (2004) Toward numericalmodeling in the “terra incognita”. Journal of the Atmospheric Sciences, 61, 1816–1826.
687 URL: http://dx.doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
688 Yuan,W., Yu, R., Zhang, M., Lin,W., Li, J. and Fu, Y. (2013) Diurnal cycle of summer precipitation over subtropical east asia in
689 CAM5. Journal of Climate, 26, 3159 – 3172. URL: https://journals.ametsoc.org/view/journals/clim/26/10/jcli-d-
690 12-00119.1.xml.
691 Zang, Y., Street, R. L. and Koseff, J. R. (1993) A dynamicmixed subgrid-scalemodel and its application to turbulent recirculating
692 flows. Physics of Fluids A: Fluid Dynamics, 5, 3186–3196. URL: https://doi.org/10.1063/1.858675.
693 Zhang, X., Bao, J.-W., Chen, B., and Grell, E. D. (2018) A three-dimensional scale-adaptive turbulent kinetic energy scheme in
694 theWRF-ARWmodel. MonthlyWeather Review, 146, 2023–2045. URL: https://journals.ametsoc.org/view/journals/
695 mwre/146/7/mwr-d-17-0356.1.xml. University Staff: Request a correction | Centaur Editors: Update this record |