Accessibility navigation


Local atmosphere–ocean predictability: dynamical origins, lead times, and seasonality

Bach, E. ORCID: https://orcid.org/0000-0002-9725-0203, Motesharrei, S., Kalnay, E. and Ruiz-Barradas, A. (2019) Local atmosphere–ocean predictability: dynamical origins, lead times, and seasonality. Journal of Climate, 32 (21). pp. 7507-7519. ISSN 1520-0442

[img]
Preview
Text (Open Access) - Published Version
· Please see our End User Agreement before downloading.

16MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/JCLI-D-18-0817.1

Abstract/Summary

Due to the physical coupling between atmosphere and ocean, information about the ocean helps to better predict the future of the atmosphere, and in turn, information about the atmosphere helps to better predict the ocean. Here, we investigate the spatial and temporal nature of this predictability: where, for how long, and at what frequencies does the ocean significantly improve prediction of the atmosphere, and vice versa? We apply Granger causality, a statistical test to measure whether a variable improves prediction of another, to local time series of sea surface temperature (SST) and low-level atmospheric variables. We calculate the detailed spatial structure of the atmosphere-to-ocean and ocean-to-atmosphere predictability. We find that the atmosphere improves prediction of the ocean most in the extratropics, especially in regions of large SST gradients. This atmosphere-to-ocean predictability is weaker but longer-lived in the tropics, where it can last for several months in some regions. On the other hand, the ocean improves prediction of the atmosphere most significantly in the tropics, where this predictability lasts for months to over a year. However, we find a robust signature of the ocean on the atmosphere almost everywhere in the extratropics, an influence that has been difficult to demonstrate with model studies. We find that both the atmosphere-to-ocean and ocean-to-atmosphere predictability are maximal at low frequencies, and both are larger in the summer hemisphere. The patterns we observe generally agree with dynamical understanding and the results of the Kalnay dynamical rule, which diagnoses the direction of forcing between the atmosphere and ocean by considering the local phase relationship between simultaneous sea surface temperature and vorticity anomaly signals. We discuss applications to coupled data assimilation.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:116996
Publisher:American Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation