Accessibility navigation


Minimal peptide sequences that undergo liquid–liquid phase separation via self-coacervation or complex coacervation with ATP

Castelletto, V. ORCID: https://orcid.org/0000-0002-3705-0162, Seitsonen, J., Pollitt, A. ORCID: https://orcid.org/0000-0001-8706-5154 and Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926 (2024) Minimal peptide sequences that undergo liquid–liquid phase separation via self-coacervation or complex coacervation with ATP. Biomacromolecules. ISSN 1526-4602

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

13MB
[img] Text - Accepted Version
· Restricted to Repository staff only

3MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/acs.biomac.4c00738

Abstract/Summary

The simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences W2R2 and W3R3 was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements. SAXS was used to elucidate the structure within the coacervate droplets, and circular dichroism spectroscopy was used to probe the conformation of the peptides, a characteristic signature for cation−π interactions being present under conditions of coacervation. These observations were rationalized using a simple model for the Rayleigh stability of charged coacervate droplets, along with atomistic molecular dynamics simulations which provide insight into stabilizing π–π stacking interactions of tryptophan as well as arginine–tryptophan cation−π interactions (which modulate the charge of the tryptophan π-electron system). Remarkably, the dipeptide WR did not show simple coacervation under the conditions examined, but complex coacervation was observed in mixtures with ATP (adenosine triphosphate). The electrostatically stabilized coacervation in this case provides a minimal model for peptide/nucleotide membraneless organelle formation. These are among the simplest model peptide systems observed to date able to undergo either simple or complex coacervation and are of future interest as protocell systems.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:117495
Publisher:American Chemical Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation