Connections between sub-cloud coherent updrafts and the life cycle of maritime shallow cumulus clouds in large eddy simulationGu, J.-F. ORCID: https://orcid.org/0000-0002-7752-4553, Plant, R. S. ORCID: https://orcid.org/0000-0001-8808-0022 and Holloway, C. E. ORCID: https://orcid.org/0000-0001-9903-8989 (2024) Connections between sub-cloud coherent updrafts and the life cycle of maritime shallow cumulus clouds in large eddy simulation. Journal of Advances in Modeling Earth Systems, 16 (10). e2023MS003986. ISSN 1942-2466
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1029/2023MS003986 Abstract/SummaryWe develop a novel approach to detect cloud-subcloud coupling during the cloud life cycle and analyse a large eddy simulation of marine shallow cumulus based on the BOMEX campaign. Our results demonstrate how the activity of sub-cloud coherent updrafts (SCUs) affect the evolution of shallow cloud properties during their life cycles, from triggering to development, and through to dissipation. Most clouds (∼80%) are related to SCUs during their lifetime but not every SCU (∼20% for short-lived ones) leads to cloud formation. The fastest growing SCUs in a relatively moist region are most likely to initiate clouds. The evolution of cloud base mass-flux depends on cloud lifetime. Compared with short-lived clouds, longer lived clouds have longer periods of development, even normalized by the full lifetime, and tend to increase their cloud base mass-flux to a stronger maximum. This is consistent with the evolution of mass flux near the top of SCU, indicating that the development of clouds is closely related to the sub-cloud activity. When the SCUs decay and detach from the lifting condensation level, the corresponding cloud base starts to rise, signifying the start of cloud dissipation, during which the cloud top lowers to approach the rising cloud base. Previous studies have described similar conceptual pieces of this relationship but here we provide a continuous framework to cover all the stages of cloud-subcloud coupling. Our findings provide quantitative evidence to supplement the conceptual model of shallow cloud life cycle and is critical to improve the steady-state assumption in parameterization.
DownloadsDownloads per month over past year
Albright, A. L., Bony, S., Stevens, B., & Vogel, R. (2022). Observed subcloud-layer
572 moisture and heat budgets in the trades. Journal of the Atmospheric Sciences,
573 79 , 2363–2385. doi: https://doi.org/10.1175/JAS-D-21-0337.1
574 Angevine, W. M., Olson, J., Gristey, J. J., Glenn, I., Feingold, G., & Turner, D. D.
575 (2020). Scale awareness, resolved circulations, and practical limits in the
576 mynn-edmf boundary layer and shallow cumulus scheme. Monthly Weather
577 Review, 148 , 4629–4639. doi: https://doi.org/10.1175/MWR-D-20-0066.1
578 Betts, A. K. (1973). Non-precipitating cumulus convection and its parameteriza579
tion. Quart. J. Roy. Soc. Meteor., 99 , 178-196. doi: https://doi.org/10.1002/
580 qj.49709941915
581 Blyth, A. M., Lasher-Trapp, S. G., & Cooper, W. A. (2005). A study of thermals in
582 cumulus clouds. Quart. J. Roy. Meteor. Soc., 131 , 1171-1190. doi: https://doi
583 .org/10.1256/qj.03.180
584 Bony, S., & Dufresne, J.-L. (2005). Marine boundary layer clouds at the heart of
585 tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett ,
586 32 , L20806. doi: 10.1029/2005GL023851
587 Brient, F., Schneider, T., Tan, Z., Bony, S., Qiu, X., & Hall, A. (2016). Shallowness
588 of tropical low clouds as a predictor of climate models’ response to warming.
589 Clim. Dyn., 47 , 433-449. doi: https://doi.org/10.1007/s00382-015-2846-0
590 Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C.,
591 Khairoutdinov, M., . . . Stevens, B. (2002). Large-eddy simulation of the
592 diurnal cycle of shallow cumulus convection over land. Quarterly Journal
593 of the Royal Meteorological Society, 128 , 1075-1093. doi: https://doi.org/
594 10.1256/003590002320373210
595 Brown, N., Lepper, A., Weiland, M., Hill, A., & Shipway, B. (2018). In situ data
596 analytics for highly scalable cloud modelling on cray machines. Concurr. Com597
put. Pract. Exp., 30 , e4331. doi: https://doi.org/10.1256/qj.04.101
598 Brown, N., Lepper, A., Weiland, M., Hill, A., Shipway, B., Maynard, C., . . . Rezny,
599 M. (2015). A highly scalable Met Office NERC Cloud model. In Proceedings of
600 the 3rd International Conference on Exascale Applications and Software-EASC
601 2015. Edinburgh, UK, April 2015 , 132-137.
602 Chen, J., Hagos, S., Feng, Z., Fast, J. D., & Xiao, H. (2023). The role of cloud-cloud
603 interaction in the life cycle of shallow cumulus clouds. J. Atmos. Sci., 80 , 671–
604 686. doi: https://doi.org/10.1175/JAS-D-22-0004.1
605 Chen, S. S., & Houze Jr, R. A. (1997). Diurnal variation and life-cycle deep convec606
tive systems over the tropical pacific warm pool. Quart. J. Roy. Meteor. Soc.,
607 123 , 357-388. doi: https://doi.org/10.1002/qj.49712353806
608 Cho, H.-R. (1977). Contributions of cumulus cloud life-cycle effects to the large609
scale heat and moisture budget equations. Journal of the Atmospheric Sci610
ences, 34 , 87-97. doi: https://doi.org/10.1175/1520-0469(1977)034⟨0087:
611 COCCLC⟩2.0.CO;2
–21–
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
612 Couvreux, F., Hourdin, F., & Rio, C. (2010). Resolved versus parameterized
613 boundary-layer plumes. part i: A parameterization-oriented conditional sam614
pling in large-eddy simulations. Boundary-Layer Meteorol., 134 , 441–458. doi:
615 https://doi.org/10.1007/s10546-009-9456-5
616 Dawe, J. T., & Austin, P. H. (2012). Statistical analysis of an les shallow cumu617
lus cloud ensemble using a cloud tracking algorithm. Atmos. Chem. Phys., 12 ,
618 1101–1119. doi: https://doi.org/10.5194/acp-12-1101-2012
619 Denby, L., Bo¨ing, S. J., Parker, D. J., Ross, A. N., & Tobias, S. M. (2022). Char620
acterising the shape, size, and orientation of cloud-feeding coherent boundary621
layer structures. Quarterly Journal of the Royal Meteorological Society, 148 ,
622 499-519. doi: https://doi.org/10.1002/qj.4217
623 Endo, S., Zhang, D., Vogelmann, A. M., Kollias, P., Lamer, K., Oue, M., . . .
624 Romps, D. M. (2019). Reconciling differences between large-eddy simula625
tions and doppler lidar observations of continental shallow cumulus cloud626
base vertical velocity. Geophysical Research Letters, 11539-11547. doi:
627 https://doi.org/10.1029/2019GL084893
628 Fletcher, J. K., & Bretherton, C. S. (2010). Evaluating boundary layer-based mass
629 flux closures using cloud-resolving model simulations of deep convection. Jour630
nal of the Atmospheric Sciences, 67 , 2212-2225. doi: https://doi.org/10.1175/
631 2010jas3328.1
632 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002). A pdf-based model for
633 boundary layer clouds. part I: Method and model description. J. Atmos.
634 Sci., 59 , 3540–3551. doi: https://doi.org/10.1175/1520-0469(2002)059⟨3540:
635 APBMFB⟩2.0.CO;2
636 Grant, A. L. M. (2006). The cumulus-capped boundary layer. II: Interface fluxes.
637 Quart. J. Roy. Meteor. Soc., 132 , 1405–1422. doi: https://doi.org/10.1256/qj
638 .04.170
639 Gregory, D., & Rowntree, P. R. (1990). A mass flux convection scheme with
640 representation of cloud ensemble characteristics and stability-dependent
641 closure. Monthly Weather Review, 118 (7), 1483-1506. doi: 10.1175/
642 1520-0493(1990)118⟨1483:AMFCSW⟩2.0.CO;2
643 Griewank, P. J., Heus, T., Lareau, N. P., & Neggers, R. A. J. (2020). Size depen644
dence in chord characteristics from simulated and observed continental shallow
645 cumulus. Atmospheric Chemistry and Physics, 20 (17), 10211–10230. Re646
trieved from https://acp.copernicus.org/articles/20/10211/2020/ doi:
647 10.5194/acp-20-10211-2020
648 Griewank, P. J., Heus, T., & Neggers, R. A. J. (2022). Size-dependent charac649
teristics of surface-rooted three-dimensional convective objects in continental
650 shallow cumulus simulations. Journal of Advances in Modeling Earth Systems,
651 14 , 2021MS002612. doi: https://doi.org/10.1029/2021MS002612
652 Gu, J.-F., Plant, R. S., & Holloway, C. E. (2023). Moist halo region of shallow
653 cumulus clouds in large eddy simulations. Quart. J. Roy. Soc. Meteor., 149 ,
654 e2020GL090460. doi: submitted
655 Gu, J.-F., Plant, R. S., & Holloway, C. E. (2024). Connections between sub-cloud
656 coherent structures and the life cycle of maritime shallow cumulus clouds in
657 large eddy simulation. , [Dataset] Zenodo. doi: https://zenodo.org/record/
658 8300016
659 Gu, J.-F., Plant, R. S., Holloway, C. E., & Muetzelfeldt, M. (2020). Pressure drag
660 for shallow cumulus clouds: from thermals to the cloud ensemble. Geophys.
661 Res. Lett , 47 , e2020GL090460. doi: https://doi.org/10.1029/2020GL090460
662 Heus, T., Jonker, H. J. J., den Akker, H. E. A. V., Griffith, E. J., Koutek, M.,
663 & Post, F. H. (2009). A statistical approach to the life cycle analysis of
664 cumulus clouds selected in a virtual reality environment. Journal of Geo665
physical Research: Atmospheres, 114 , D06208. doi: https://doi.org/10.1029/
666 2008JD010917
–22–
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
667 Heus, T., & Seifert, A. (2013). Automated tracking of shallow cumulus clouds in
668 large domain. Geosci. Model Dev., 6 , 1261–1273. doi: https://doi.org/10.5194/
669 gmd-6-1261-2013
670 Jiang, H., Xue, H., Teller, A., Feingold, G., & Levin, Z. (2006). Aerosol effects
671 on the lifetime of shallow cumulus. Geophysical Research Letters, 33 . doi:
672 https://doi.org/10.1029/2006GL026024
673 Kain, J. S. (2004). The kain-fritsch convective parameterization: An update. Jour674
nal of Applied Meteorology and Climatology, 43 , 170-181. doi: https://doi.org/
675 10.1175/1520-0450(2004)043⟨0170:TKCPAU⟩2.0.CO;2
676 Kairoutdinov, M. F., & Randall, D. A. (2002). Similarity of deep continen677
tal cumulus convection as revealed by a three-dimensional cloud-resolving
678 model. J. Atmos. Sci., 59 , 2550-2566. doi: https://doi.org/10.1175/
679 1520-0469(2002)059⟨2550:SODCCC⟩2.0.CO;2
680 Kuang, Z., & Bretherton, C. S. (2006). A mass-flux scheme view of a hgih-resolution
681 simulation of a transition from shallow to deep cumulus convection. J. Atmos.
682 Sci., 63 , 1895-1909. doi: https://doi.org/10.1175/JAS3723.1
683 Lareau, N. P., Zheng, Y., & Klein, S. A. (2018). Observed boundary layer controls
684 on shallow cumulus at the arm southern great plains site. Journal of the Atmo685
spheric Sciences, 75 (7), 2235–2255.
686 Larson, V. E. (2017). Clubb-silhs: A parameterization of subgrid variability in the
687 atmosphere. arXiv. doi: 1711.03675v3
688 Larson, V. E., & Golaz, J.-C. (2005). Using probability density functions to derive
689 consistent closure relationships among higher-order moments. Mon. Wea. Rev.,
690 133 , 1023–1042. doi: https://doi.org/10.1175/MWR2902.1
691 Larson, V. E., Golaz, J.-C., & Cotton, W. R. (2002). Small-scale and mesoscale
692 variability of scalars in cloudy boundary layers: Joint probability density
693 functions. J. Atmos. Sci., 59 , 3519–3539. doi: https://doi.org/10.1175/
694 1520-0469(2002)059⟨3519:SSAMVI⟩2.0.CO;2
695 LeMone, M. A., Angevine, W. M., Bretherton, C. S., Chen, F., Dudhia, J., Fe696
dorovich, E., . . . Weil, J. (2019). 100 years of progress in boundary layer
697 meteorology. Meteorological Monographs, 59 , 9.1–9.85. doi: https://doi.org/
698 10.1175/AMSMONOGRAPHS-D-18-0013.1
699 LeMone, M. A., & Pennell, W. T. (1976). The relationship of trade wind cumulus
700 distribution to subcloud layer fluxes and structure. Monthly Weather Re701
view, 104 , 524–539. doi: https://doi.org/10.1175/1520-0493(1976)104⟨0524:
702 TROTWC⟩2.0.CO;2
703 Lilly, D. K. (1962). On the numerical simulation of buoyant convection. Tellus, 14 ,
704 2153–3490. doi: http://dx.doi.org/10.1111/j.2153-3490.1962.tb00128.x
705 Maason-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., P´ean, C., Berger, S., . . .
706 Zhou(eds.), B. (2021). Ipcc, 2021: Climate change 2021: The physical science
707 basis. Cambridge University Press, Cambridge, United Kingdom and New
708 York, NY, USA. doi: https://doi.org/10.1017/9781009157896
709 Muetzelfeldt, M. (2020). Designs for representing shear-induced cloud field organiza710
tion in a convection parametrization scheme. PhD thesis, 245pp. (Department
711 of Meteorology, University of Reading)
712 Neggers, R. A. J. (2015). Exploring bin-macrophysics models for moist convective
713 transport and clouds. Journal of Advances in Modeling Earth Systems, 7 (4),
714 2079-2104. doi: https://doi.org/10.1002/2015MS000502
715 Neggers, R. A. J., & Griewank, P. J. (2021). A binomial stochastic framework for
716 efficiently modeling discrete statistics of convective populations. Journal of Ad717
vances in Modeling Earth Systems, 13 , e2020MS002229. doi: https://doi.org/
718 10.1029/2020MS002229
719 Neggers, R. A. J., & Griewank, P. J. (2022). A decentralized approach for model720
ing organized convection based on thermal populations on microgrids. Journal
721 of Advances in Modeling Earth Systems, 14 , e2022MS003042. doi: https://doi
–23–
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
722 .org/10.1029/2022MS003042
723 Neggers, R. A. J., Jonker, H. J. J., & Siebesma, A. P. (2003). Size statistics of cu724
mulus cloud populations in large-eddy simulations. Journal of the Atmospheric
725 Sciences, 60 , 1060-1074. doi: https://doi.org/10.1175/1520-0469(2003)60⟨1060:
726 SSOCCP⟩2.0.CO;2
727 Neggers, R. A. J., Stevens, B., & Neelin, J. D. (2006). A simple equilibrium model
728 for shallow-cumulus-topped mixed layers. Theoretical and Computational Fluid
729 Dynamics, 20 (5-6), 305-322.
730 Nicholls, S., & LeMone, M. A. (1980). The fair weather boundary layer in gate: The
731 relationship of subcloud fluxes and structure to the distribution and enhance732
ment of cumulus clouds. Journal of the Atmospheric Sciences, 37 , 2051–2067.
733 doi: https://doi.org/10.1175/1520-0469(1980)037⟨2051:TFWBLI⟩2.0.CO;2
734 O¨ ktem, R., Prabhat, Lee, J., Thomas, A., Zuidema, P., & Romps, D. M. (2014).
735 Stereo photogrammetry of oceanic clouds. Journal of Atmospheric and Oceanic
736 Technology, 41 (7), 1482–1502.
737 Olson, J. B., Kenyon, J. S., Angevine, W. M., Brown, J. M., Pagowski, M., & Suselj,
738 K. (2019). A description of the mynn–edmf scheme and coupling to other
739 components in wrf-arw. NOAA Tech. Memo., OAR GSD-61 , 42 pp.
740 Plant, R. S. (2009). Statistical properties of cloud lifecycles in cloud-resolving mod741
els. Atmos. Chem. Phys., 9 , 2195–2205. doi: https://doi.org/10.5194/acp-9
742 -2195-2009
743 Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary
744 layer: Representation of cumulus clouds. Journal of the Atmospheric Sciences,
745 65 , 407–425. doi: https://doi.org/10.1175/2007JAS2256.1
746 Romps, D. M., & O¨ ktem, R. (2018, December). Observing clouds in 4d with mul747
tiview stereophotogrammetry. Bulletin of the American Meteorological Society,
748 99 (12), 2575–2586.
749 Romps, D. M., O¨ ktem, R., Endo, S., & Vogelmann, A. M. (2021, September). On
750 the lifecycle of a shallow cumulus cloud: Is it a bubble or plume, active or
751 forced? Journal of the Atmospheric Sciences, 78 (9), 2823–2833.
752 Sakradzija, M., & Klocke, D. (2018). Physically constrained stochastic shallow
753 convection in realistic kilometer-scale simulations. Journal of Advances in
754 Modeling Earth Systems, 10 (11), 2755-2776. doi: https://doi.org/10.1029/
755 2018MS001358
756 Sakradzija, M., Seifert, A., & Heus, T. (2015). Fluctuations in a quasi-stationary
757 shallow cumulus cloud ensemble. Nonlin. Processes Geophys., 22 , 65-85. doi:
758 https://doi.org/10.5194/npg-22-65-2015
759 Scorer, R. S., & Ludlam, F. H. (1953). Bubble theory of penetrative convection.
760 Quart. J. Roy. Meteor. Soc., 79 , 94-103. doi: https://doi.org/10.1002/
761 qj.49707933908
762 Seelig, T., Deneke, H., Quaas, J., & Tesche, M. (2021). Life cycle of shallow marine
763 cumulus clouds from geostationary satellite observations. Journal of Geophysi764
cal Research: Atmospheres, 126 , e2021JD035577. doi: https://doi.org/10.1029/
765 2021JD035577
766 Sherwood, S., Bony, S., & Dufresne, J.-L. (2014). Spread in model climate sensitiv767
ity traced to atmospheric convective mixing. Nature, 505 , 31-42. doi: https://
768 doi.org/10.1038/nature12829
769 Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke,
770 P. G., . . . Stevens, A. E. (2003). A large eddy simulation intercomparison
771 study of shallow cumulus convection. J. Atmos. Sci., 60 , 1201–1219. doi:
772 https://doi.org/10.1175/1520-0469(2003)60,1201:ALESIS.2.0.CO;2
773 Siebesma, A. P., & Cuijpers, J. W. M. (1995). Evaluation of parametric assumptions
774 for shallow cumulus convection. Journal of the Atmospheric Sciences, 52 , 650-
775 666. doi: https://doi.org/10.1175/1520-0469(1995)052⟨0650:EOPAFS⟩2.0.CO;
776 2
–24–
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
777 Siebesma, A. P., & Jonker, H. J. J. (2000). Anomalous scaling of cumulus cloud
778 boundaries. Phys. Rev. Lett., 85 , 214–217. doi: 10.1103/PhysRevLett.85.214
779 Siebesma, A. P., Soares, P. M. M., & Teixeira, J. (2007). A combined eddy780
diffusivity mass-flux approach for the convective boundary layer. J. Atmos.
781 Sci., 64 , 1230–1248. doi: https://doi.org/10.1175/JAS3888.1
782 Smagorinsky, J. (1963). General circulation experiments with the primitive equation:
783 I. the basic experiment. Mon. Wea. Rev., 91 , 99-164. doi: https://doi.org/10
784 .1175/1520-0493(1963)091⟨0099:GCEWTP⟩2.3.CO;2
785 Soares, P. M. M., Miranda, P. M. A., Siebesma, A. P., & Teixeira, J. (2004).
786 An eddy-diffusivity/mass-flux parameterization for dry and shallow cu787
mulus convection. Quart. J. Roy. Meteor. Soc., 130 , 3365–3384. doi:
788 https://doi.org/10.1256/qj.03.223
789 Stein, T. H. M., Hogan, R. J., Hanley, K. E., Nicol, J. C., Lean, H. W., Plant, R. S.,
790 . . . Halliwell, C. E. (2014). The three-dimensional morphology of simulated
791 and observed convective storms over southern england. Mon. Wea. Rev., 142 ,
792 3264–3283. doi: https://doi.org/10.1175/MWR-D-13-00372.1
793 Stevens, B. (2006). Bulk boundary-layer concepts for simplified models of tropical
794 dynamics. Theoretical and Computational Fluid Dynamics, 20 (5-6), 279-304.
795 Suselj, K., Kurowski, M. J., & Teixeira, J. (2019). A unified eddy-diffusivity/mass796
flux approach for modeling atmospheric convection. J. Atmos. Sci., 76 , 2505–
797 2537. doi: https://doi.org/10.1175/JAS-D-18-0239.1
798 Suselj, K., Teixeira, J., & Metheou, G. (2012). Eddy diffusivity/mass flux and shal799
low cumulus boundary layer: An updraft pdf multiple mass flux scheme. J. At800
mos. Sci., 69 , 1513–1533. doi: https://doi.org/10.1175/JAS-D-11-090.1
801 Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., & Teixeira, J. (2018).
802 An extended eddy-diffusivity mass-flux scheme for unified representation of
803 subgrid-scale turbulence and convection. J. Adv. Model. Earth Syst., 10 ,
804 770–800. doi: https://doi.org/10.1002/2017MS001162
805 van Stratum, B. J. H., de Arellano, J. V., van Heervaarden, C. C., & Ouwersloot,
806 H. G. (2014). Subcloud-layer feedbacks driven by the mass flux of shallow cu807
mulus convection over land. Journal of the Atmospheric Sciences, 71 , 881–895.
808 doi: https://doi.org/10.1175/JAS-D-13-0192.1
809 vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A. S.,
810 Burnet, F., . . . Wyszogrodzki, A. (2011). Controls on precipitation
811 and cloudiness in simulations of trade-wind cumulus as observed during
812 rico. Journal of Advances in Modeling Earth Systems, 3 , M06001. doi:
813 https://doi.org/10.1029/2011MS000056
814 Vial, J., Bony, S., Dufresne, J.-L., & Roehrig, R. (2016). Coupling between lower815
tropospheric convective mixing and low-level clouds: Physical mechanisms and
816 dependence on convection scheme. J. Adv. Model. Earth Syst., 8 , 1892-1911.
817 doi: 10.1002/2016MS000740
818 Vial, J., Bony, S., Stevens, B., & Vogel, R. (2017). Mechanisms and model diversity
819 of trade-wind shallow cumulus cloud feedbacks: A review. Surv. Geophys., 38 ,
820 1331-1353. doi: https://doi.org/10.1007/s10712-017-9418-2
821 Vial, J., Dufresne, J.-L., & Bony, S. (2013). On the interpretation of inter-model
822 spread in cmip5 climate sensitivity estimates. Clim. Dyn., 41 , 3339-3362. doi:
823 https://doi.org/10.1007/s00382-013-1725-9
824 Wang, Y., Cheng, X., Fei, J., & Zhou, B. (2022). Modeling the shallow cumulus825
topped boundary layer at gray zone resolutions. Journal of the Atmospheric
826 Sciences, 79 , 2435–2451. doi: https://doi.org/10.1175/JAS-D-21-0339.1
827 Williams, A. G., Zahorowski, W., Chambers, S., Griffiths, A., Hacker, J. M., Ele828
ment, A., & Werczynski, S. (2011). The vertical distribution of radon in clear
829 and cloudy daytime terrestrial boundary layers. Journal of the Atmospheric
830 Sciences, 68 , 155–174. doi: https://doi.org/10.1175/2010JAS3576.1
831 Xie, S., Zhang, M., Boyle, J. S., Cederwall, R. T., Potter, G. L., & Lin, W. (2004).
–25–
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
832 Impact of a revised convective triggering mechanism on Community Atmo833
sphere Model, Version 2, simulations: Results from short-range weather fore834
casts. J. Geophys. Res., 109 (D14). doi: 10.1029/2004JD004692
835 Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
836 Ceppi, P., . . . Taylor, K. E. (2020). Causes of higher climate sensi837
tivity in cmip6 models. Geophys. Res. Lett , 47 , e2019GL085782. doi:
838 https://doi.org/10.1029/2019GL085782
839 Zhang, Y., Klein, S. A., Fan, J., Chandra, A. S., Kollias, P., Xie, S., & Tang,
840 S. (2017). Large-eddy simulation of shallow cumulus over land: A com841
posite case based on arm long-term observations at its southern great
842 plains site. Journal of the Atmospheric Sciences, 74 , 3229–3251. doi:
843 https://doi.org/10.1175/JAS-D-16-0317.1
844 Zhao, M., & Austin, P. H. (2005a). Life cycle of numerically simulated shallow cu845
mulus clouds. part II: Mixing dynamics. Journal of the Atmospheric Sciences,
846 62 , 1291-1310. doi: https://doi.org/10.1175/JAS3415.1
847 Zhao, M., & Austin, P. H. (2005b). Life cycle of numerically simulated shallow
848 cumulus clouds. part I: Transport. Journal of the Atmospheric Sciences, 62 ,
849 1269-1290. doi: https://doi.org/10.1175/JAS3414.1
850 Zheng, Y. (2019). Theoretical understanding of the linear relationship between
851 convective updrafts and cloud-base height for shallow cumulus clouds. part I:
852 Maritime conditions. Journal of the Atmospheric Sciences, 76 , 2539-2558. doi:
853 https://doi.org/10.1175/JAS-D-18-0323.1
854 Zheng, Y., Rosenfeld, D., & Li, Z. (2021). Sub-cloud turbulence explains cloud-base
855 updrafts for shallow cumulus ensembles: first observational evidence. Geophys.
856 Res. Lett , 48 , e2020GL091881. doi: https://doi.org/10.1029/2020GL091881
– University Staff: Request a correction | Centaur Editors: Update this record |