Stallard, T. S., Burrell, A. G., Melin, H., Fletcher, L. N., Miller, S., Moore, L., O'Donoghue, J.
ORCID: https://orcid.org/0000-0002-4218-1191, Connerney, J. E. P., Satoh, T. and Johnson, R. E.
(2018)
Identification of Jupiter’s magnetic equator through H3+ ionospheric emission.
Nature Astronomy, 2 (10).
pp. 773-777.
ISSN 2397-3366
doi: 10.1038/s41550-018-0523-z
Abstract/Summary
Our understanding of Jupiter’s magnetic field has been developed through a combination of spacecraft measurements at distances >1.8RJ and images of the aurora. These models all agree on the strength and direction of the Jovian dipole magnetic moments, but because higher-order magnetic moments decay more strongly with distance from the planet, past spacecraft measurements could not easily resolve them. In the past 2 years, the Juno mission has measured very close to the planet (>1.05RJ), observing a strongly enhanced localized magnetic field in some orbits, and resulting in models that identify strong hemispheric asymmetries at mid-to-high latitudes. These features could be better resolved by identifying changes in the ionospheric density caused by interactions with the magnetic field, but past observations have been unable to spatially resolve such features. In this study, we identify a dark sinusoidal ribbon of weakened H3+ emission near the jovigraphic equator, which we show to be an ionospheric signature of Jupiter’s magnetic equator. We also observe complex structures in Jupiter’s mid-latitude ionosphere, including one dark spot that is coincident with a localized enhancement in Jupiter’s radial magnetic field observed recently by Juno. These features reveal evidence of complex localized interactions between Jupiter’s ionosphere and its magnetic field. Our results provide ground-truth for Juno spacecraft observations and future ionospheric and magnetic field models.
Altmetric Badge
| Item Type | Article |
| URI | https://centaur.reading.ac.uk/id/eprint/120086 |
| Identification Number/DOI | 10.1038/s41550-018-0523-z |
| Refereed | Yes |
| Divisions | No Reading authors. Back catalogue items Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology |
| Publisher | Springer Nature |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download