Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., & Ping-Ping, X. (2003). The Version-2 783 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–784 present). Journal of Hydrometeorology, 4, 1147–1167. 785 Ajayamohan, R. S., Khouider, B., Majda, A. J., & Deng, Q. (2016). Role of stratiform heating on 786 the organization of convection over the monsoon trough. Climate Dynamics, 47(12), 787 3641–3660. https://doi.org/10.1007/s00382-016-3033-7 788
Barnes, H. C., M. D. Zuluaga, and R. A. Houze Jr. (2015), Latent heating characteristics of the 789 MJO computed from TRMM observations, J. Geophys. Res. Atmos., 120, 1322–1334, 790 doi:10.1002/2014JD022530 791
Becker, T., Bechtold, P., & Sandu, I. (2021). Characteristics of convective precipitation over 792 tropical Africa in storm-resolving global simulations. Quarterly Journal of the Royal 793 Meteorological Society, 147(741), 4388–4407. https://doi.org/10.1002/qj.4185 794
Bush, S. J., Turner, A. G., Woolnough, S. J., Martin, G. M., & Klingaman, N. P. (2015). The 795 effect of increased convective entrainment on Asian monsoon biases in the MetUM 796 general circulation model. Quarterly Journal of the Royal Meteorological Society, 797 141(686), 311–326. https://doi.org/10.1002/qj.2371 798
Bush, M., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., et al. (2022). The 799 second met office unified model/jules regional atmosphere and land configuration, RAL2. 800 Geoscientific Model Development Discussions, 2022, 1–35. https://doi.org/10.5194/gmd-801 2022-209 802
Boyle, J. S., Klein, S. A., Lucas, D. D., Ma, H.-Y., Tannahill, J., & Xie, S. (2015). The 803 parametric sensitivity of CAM5's MJO. Journal of Geophysical Research: Atmospheres, 804 120(4), 1424–1444. https://doi.org/10.1002/2014JD022507 805
Cao, G., & Zhang, G. J. (2017). Role of vertical structure of convective heating in MJO 806 simulation in NCAR CAM 5.3. Journal of Climate, 30(18), 7423–7439. 807 https://doi.org/10.1175/JCLI-D-16-0913.1 808
Chen, C. C., Richter, J. H., Liu, C., Moncrieff, M. W., Tang, Q., Lin, W., et al. (2021). Effects of 809 Organized Convection Parameterization on the MJO and Precipitation in E3SMv1. Part I: 810 Mesoscale Heating. Journal of Advances in Modeling Earth Systems, 13(6). 811 https://doi.org/10.1029/2020MS002401 812
manuscript submitted to Journal of Advances in Modeling Earth Systems
Cheng, C. P., & Houze, R. A. (1979). The distribution of convective and mesoscale precipitation 813 in GATE radar echo patterns. Monthly Weather Review, 107(10). 814 https://doi.org/10.1175/1520-0493(1979)107<1370:TDOCAM>2.0.CO;2 815
Daleu, C. L., Plant, R. S., Stirling, A. J., & Whitall, M. (2023). Evaluating the CoMorph-A 816 parametrization using idealized simulations of the two-way coupling between convection 817 and large-scale dynamics. Quarterly Journal of the Royal Meteorological Society, 818 149(757), 3087–3109. https://doi.org/10.1002/qj.4547 819
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and 820 Wood, N. (2005), A new dynamical core for the Met Office's global and regional 821 modelling of the atmosphere, Quarterly Journal of the Royal Meteorological Society, 822 131(608), 1759–1782. https://doi.org/10.1256/qj.04.101 823 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). 824 The ERA-interim reanalysis: Configuration and performance of the data assimilation 825 system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. 826 https://doi.org/10.1002/qj.828 827 Deng, Q., Khouider, B., Majda, A., & Ajayamohan, R. (2016). Effect of stratiform heating on the 828 planetary-scale organization of tropical convection. Journal of the Atmospheric Sciences, 829 73, 371–392. https://doi.org/10.1175/JAS-D-15-0178.1 830 Dudhia, J. and Moncrieff, W. W. 1987 A numerical simulation of quasi-stationary tropical bands. 831 Quarterly Journal of the Royal Meteorological Society, 113(477), 929–967. 832 https://doi.org/10.1002/qj.49711347711. 833
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. 834 (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 835 experimental design and organization. Geoscientific Model Development, 9, 1937–1958, 836 https://doi.org/10.5194/gmd-9-1937-2016 837
Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., 838 Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., 839 Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., 840 Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., 841 Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., Williams, K. 842 D. (2016). ESMValTool (v1.0)—A community diagnostic and performance metrics tool 843 for routine evaluation of Earth system models in CMIP. Geoscientific Model 844 Development, 9(5), 1747–1802. https://doi.org/10.5194/gmd-9-1747-2016 845
Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze, R. A., Li, J., et al. (2021). A global high-846 resolution mesoscale convective system database using satellite-derived cloud tops, 847 surface precipitation, and tracking. Journal of Geophysical Research: Atmospheres, 848 126(8). https://doi.org/10.1029/2020JD034202 849
Feng, Z., Hardin, J., Barnes, H. C., Li, J., Leung, L. R., Varble, A., & Zhang, Z. (2023). 850 PyFLEXTRKR: A flexible feature tracking Python software for convective cloud 851 analysis. Geoscientific Model Development, 16, 2753–2776. https://doi.org/10.5194/gmd-852 16-2753-2023 853
manuscript submitted to Journal of Advances in Modeling Earth Systems
Grubišić, V., & Moncrieff, M. W. (2000). Parameterization of convective momentum transport 854 in highly baroclinic conditions. Journal of the Atmospheric Sciences, 57(18), 3035–3049. 855 https://doi.org/10.1175/1520-0469(2000)057<3035:POCMTI>2.0.CO;2 856
Han, B., Fan, J., Varble, A., Morrison, H., Williams, C. R., Chen, B., et al. (2019). Cloud-857 Resolving model intercomparison of an MC3E squall line case: Part II. Stratiform 858 precipitation properties. Journal of Geophysical Research: Atmospheres, 124(2), 1090–859 1117. https://doi.org/10.1029/2018JD029596 860
Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr. (1984), Some implications of the mesoscale 861 circulations in tropical cloud clusters for large-scale dynamics and climate, J. Atmos. Sci., 862 41, 113–121. https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2 863
Hoell, A., Cannon, F., & Barlow, M. (2018). Middle East and Southwest Asia daily precipitation 864 characteristics associated with the Madden–Julian Oscillation during Boreal Winter. 865 Journal of Climate, 31(21), 8843–8860. https://doi.org/10.1175/JCLI-D-18-0059.1 866
Houze, R. A., Smull, B. F., & Dodge, P. (1990). Mesoscale organization of springtime 867 rainstorms in Oklahoma. Monthly Weather Review, 118(3). https://doi.org/10.1175/1520-868 0493(1990)118<0613:MOOSRI>2.0.CO;2 869
Houze, Robert A. (1989). Observed structure of mesoscale convective systems and implications 870 for large‐scale heating. Quarterly Journal of the Royal Meteorological Society, 115(487). 871 https://doi.org/10.1002/qj.49711548702 872
Houze, R. A. (2004), Mesoscale convective systems, Reviews of Geophysics, 42, RG4003, 873 doi:10.1029/2004RG000150 874
Houze Jr, R. A. (2018). 100 years of research on mesoscale convective systems. Meteorological 875 Monographs, 59, 17–1. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1 876
Inverarity, G. W., Tennant, W. J., Anton, L., Bowler, N. E., Clayton, A. M., Jardak, M., Lorenc, 877 A. C., Rawlins, F., Thompson, S. A., Thurlow, M. S., Walters, D. N., & Wlasak, M. A. 878 (2023), Met Office MOGREPS-G initialisation using an ensemble of hybrid four-879 dimensional ensemble variational (En-4DEnVar) data assimilations, Quarterly Journal of 880 the Royal Meteorological Society, 149(753), 1138–1164, https://doi.org/10.1002/qj.4431 881 Kassahari, T., & Puri, S. (2020). Eigenmode Decomposition in Climate Models: Variability and 882 Predictability Analysis. Journal of Geophysical Research: Atmospheres, 125(6), 883 e2019JD031678. https://doi.org/10.1029/2019JD031678 884 Khouider, B., A. St-Cyr, A. J. Majda, and J. Tribbia (2011), The MJO and convectively coupled 885 waves in a coarse-resolution GCM with a simple multicloud parameterization, Journal of 886 the Atmospheric Sciences, 68(2), 240–264, doi:10.1175/2010JAS3443.1. 887 Khouider, B., & Moncrieff, M. W. (2015). Organized convection parameterization for the ITCZ. 888 Journal of the Atmospheric Sciences, 72(8), 3073–3096. https://doi.org/10.1175/JAS-D-889 15-0006.1.2 890
Khouider, B., Goswami, B. B., Phani, R., & Majda, A. J. (2023). A shallow-deep unified 891 stochastic mass flux cumulus parameterization in the single column Community Climate 892 Model. Journal of Advances in Modeling Earth Systems, 15, e2022MS003391. 893 https://doi.org/10.1029/2022MS003391 894
manuscript submitted to Journal of Advances in Modeling Earth Systems
Kooperman, G. J., Pritchard, M. S., & Somerville, R. C. J. (2014). The response of US summer 895 rainfall to quadrupled CO2 climate change in conventional and superparameterized 896 versions of the NCAR community atmosphere model. Journal of Advances in Modeling 897 Earth Systems, 6(3), 859–882. https://doi.org/10.1002/2014MS000306 898
Lauer, A., Bock, L., Hassler, B., Schröder, M., & Stengel, M. (2023). Cloud climatologies from 899 global climate models—A comparison of CMIP5 and CMIP6 models with satellite data. 900 Journal of Climate, 36(2), 281–311. https://doi.org/10.1175/JCLI-D-22-0181.1 901
Lavender, S. L., Stirling, A. J., Whitall, M., Stratton, R., Daleu, C. L., Plant, R. S., Lock, A. & 902 Gu, J.-F. (2024) The use of idealised experiments in testing a new convective 903 parameterization: Performance of CoMorph-A. To appear in: Quarterly Journal of the 904 Royal Meteorological Society. https://doi.org/10.1002/qj.4660 905
Leary, C. A., & Houze, R. A. (1979). Melting and evaporation of hydrometeors in precipitation 906 from the anvil clouds of deep tropical convection. Journal of the Atmospheric Sciences, 907 36(4), 669–679. https://doi.org/10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2 908
Liebmann, B., & Smith, C. A. (1996). Description of a complete (interpolated) outgoing 909 longwave radiation dataset. Bulletin of the American Meteorological Society, 77, 1275–910 1277. https://doi.org/10.1175/1520-0477-77.1.fmi 911
Liu, C. & Moncrieff, M. W. (2017) Shear-parallel mesoscale convective systems in a moist low-912 inhibition Mei-Yu front environment. Journal of the Atmospheric Sciences, 74(12), 913 4213–4228. https://doi.org/10.1175/JAS-D-17-0121.1 914
Lock, A.P., Whitall, M., Stirling, A.J., Williams, K.D., Lavender, S.L., Morcrette, C., 915 Matsubayashi, K., Field, P.R., Martin, G., Willett, M. and Heming, J., 2024. The 916 performance of the CoMorph‐A convection package in global simulations with the Met 917 Office Unified Model. Quarterly Journal of the Royal Meteorological Society. 918 https://doi.org/10.1002/qj.4781. 919
Moncrieff, M. W. (1981). A theory of organized steady convection and its transport properties. 920 Quarterly Journal of the Royal Meteorological Society, 107(451), 29–50. 921 https://doi.org/10.1002/qj.49710745103 922
Moncrieff, M. W. (1992). Organized convective systems: Archetypal dynamic-models, mass and 923 momentum flux theory, and parametrization. Quarterly Journal of the Royal 924 Meteorological Society, 118(507), 819–850. https://doi.org/10.1002/qj.49711850703 925
Moncrieff, M. W. (2019). Toward a dynamical foundation for organized convection 926 parameterization in GCMs. Geophysical Research Letters, 46(14),103–14,108. 927 https://doi.org/10.1029/2019GL085316 928
Moncrieff, M. W., & Liu, C. (2006). Representing convective organization in prediction models 929 by a hybrid strategy. Journal of the Atmospheric Sciences, 63(12). 930 https://doi.org/10.1175/JAS3812.1 931
Moncrieff, M. W., Liu, C., & Bogenschutz, P. (2017). Simulation, modeling, and dynamically 932 based parameterization of organized tropical convection for global climate models. 933 Journal of the Atmospheric Sciences, 74(5). https://doi.org/10.1175/JAS-D-16-0166.1 934
manuscript submitted to Journal of Advances in Modeling Earth Systems
Muetzelfeldt, M. R., Plant, R. S., Christensen, H. M., Zhang, Z., Woollings, T., Feng, Z. & Li, P. 935 (2025), Environmental Conditions Affecting Global Mesoscale Convective System 936 Occurrence. Journal of the Atmospheric Sciences, 82(2), 391–407. 937 https://doi.org/10.1175/JAS-D-24-0058.1 938
Pendergrass, A. &, Wang, J. & National Center for Atmospheric Research Staff (Eds). Last 939 modified 2022-11-07 "The Climate Data Guide: GPCP (Monthly): Global Precipitation 940 Climatology Project.” Retrieved from https://climatedataguide.ucar.edu/climate-941 data/gpcp-monthly-global-precipitation-climatology-project on 2024-03-13 942
Prein, A. F., Liu, C., Ikeda, K., Bullock, R., Rasmussen, R. M., Holland, G. J., & Clark, M. 943 (2020). Simulating North American mesoscale convective systems with a convection-944 permitting climate model. Climate Dynamics, 55(1), 95–110. 945 https://doi.org/10.1007/s00382-017-3993-2 946
Rushley, S. S., Kang, D., Kim, D., An, S.-I., & Wang, T. (2023). MJO in different orbital 947 regimes: Role of the mean state on the MJO’s amplitude during boreal winter. Journal of 948 Climate, 36(13), 1–41. https://doi.org/10.1175/JCLI-D-22-0725.1 949
Skamarock, W. C. (2004). Evaluating mesoscale NWP models using kinetic energy spectra. 950 Monthly Weather Review, 132(12), 3019–3032. https://doi.org/10.1175/MWR2830.1 951
Schumacher, C., Houze, R. A., & Kraucunas, I. (2004). The Tropical Dynamical Response to 952 Latent Heating Estimates Derived from the TRMM Precipitation Radar. Journal of the 953 Atmospheric Sciences, 61(12), 1341–1358. https://doi.org/10.1175/1520-954 0469(2004)061<1341:TTDRTL>2.0.CO;2 955
Schumacher, R. S., & Rasmussen, K. L. (2020). The formation, character and changing nature of 956 mesoscale convective systems. Nature Reviews Earth & Environment, 1, 300–314. 957 https://doi.org/10.1038/s43017-020-0057-7 958
Varble, A., Zipser, E. J., Fridlind, A. M., Zhu, P., Ackerman, A. S., Chaboureau, J.-P., Collis, S., 959 et al. (2014). Evaluation of cloud-resolving and limited area model intercomparison 960 simulations using TWP-ICE observations: 1. Deep convective updraft properties. Journal 961 of Geophysical Research: Atmospheres, 119(24), 13,891–13,918. 962 https://doi.org/10.1002/2013JD021371 963
Varble, A., Zipser, E. J., Fridlind, A. M., Zhu, P., Ackerman, A. S., Chaboureau, J.-P., et al. 964 (2014b). Evaluation of cloud-resolving and limited area model intercomparison 965 simulations using TWP-ICE observations: 2. Precipitation microphysics. Journal of 966 Geophysical Research: Atmospheres, 119(24), 13919–13945. 967 https://doi.org/10.1002/2013JD021372 968
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., 969 Lock, A., Manners, J., & Morcrette, C. (2019). The Met Office Unified Model global 970 atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geoscientific Model 971 Development, 12(5), 1909–1963. 972
Waliser, D., Sperber, K., Hendon, H., Kim, D., Maloney, E., Wheeler, M., et al. (2009). MJO 973 simulation diagnostics. Journal of Climate, 22, 3006–3030. 974 https://doi.org/10.1175/2008JCLI2731.1 975
manuscript submitted to Journal of Advances in Modeling Earth Systems
Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: 976 Development of an index for monitoring and prediction. Monthly Weather Review, 977 132(8), 1917–1932. https://doi.org/10.1175/1520-978 0493(2004)132<1917:AARMMI>2.0.CO;2 979
Wheeler, M., and G. N. Kiladis (1999), Convectively coupled equatorial waves: Analysis of 980 clouds and temperature in the wavenumber-frequency domain, Journal of the 981 Atmospheric Sciences, 56, 374–399. 982
Whitall, M., Stirling, A., Lock, A., Lavender, S., Stratton, R. & Matsubayashi, K. (2022) The 983 CoMorph convection scheme. UM Documentation Paper 043. 984
Yang, G.-Y., & Slingo, J. (2001). The diurnal cycle in the tropics. Monthly Weather Review, 985 129(4), 784–801. https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2 986
Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the 987 parameterization of cumulus convection in the Canadian climate centre general 988 circulation model. Atmosphere - Ocean, 33(3). 989 https://doi.org/10.1080/07055900.1995.9649539 990
Zhang, Z., Varble, A., Feng, Z., Hardin, J., & Zipser, E. (2021). Growth of mesoscale convective 991 systems in observations and a seasonal convection-permitting simulation over Argentina. 992 Monthly Weather Review, 149(10), 3469–3490. https://doi.org/10.1175/MWR-D-20-993 0411.1 994 Zhang, Z., Christensen, H. M., Muetzelfeldt, M. R., Woollings, T., Plant, R. S., Stirling, A. J., 995 Whitall, M. A., Moncrieff, M. W., Chen, C.-C., & Feng, Z. (2024a). Organized 996 Convection Parameterization Source Code for Submission: “Advancing Organized 997 Convection Representation in the Unified Model: Implementing and Enhancing 998 Multiscale Coherent Structure Parameterization” to Journal of Advances in Modeling 999 Earth Systems [Software]. Zenodo. https://doi.org/10.5281/zenodo.13683478 1000 Zhang, Z., Varble, A., Feng, Z., Marquis, J., Hardin, J., & Zipser, E. (2024b). Dependencies of 1001 simulated convective cell and system growth biases on atmospheric instability and model 1002 resolution. Journal of Geophysical Research: Atmospheres, 129(22), e2024JD04190. 1003 https://doi.org/10.1029/2024JD041090 1004 Zhang, Z., Christensen, H. M., Muetzelfeldt, M. R., Woollings, T., Plant, R. S., Stirling, A. J., 1005 Whitall, M. A., Moncrieff, M. W., Chen, C.-C., & Feng, Z. (2025). Supporting Datasets 1006 for Submission: “Advancing Organized Convection Representation in the Unified Model: 1007 Implementing and Enhancing Multiscale Coherent Structure Parameterization” to Journal 1008 of Advances in Modeling Earth Systems [Dataset]. Zenodo. 1009 https://doi.org/10.5281/zenodo.14837977 1010