Nixon, C. A.
ORCID: https://orcid.org/0000-0001-9540-9121, Bézard, B.
ORCID: https://orcid.org/0000-0002-5433-5661, Cornet, T.
ORCID: https://orcid.org/0000-0001-5971-0056, Park Coy, B.
ORCID: https://orcid.org/0000-0002-0508-857X, de Pater, I.
ORCID: https://orcid.org/0000-0002-4278-3168, Es-Sayeh, M.
ORCID: https://orcid.org/0000-0002-0643-4323, Hammel, H. B.
ORCID: https://orcid.org/0000-0001-8751-3463, Lellouch, E.
ORCID: https://orcid.org/0000-0001-7168-1577, Lombardo, N. A.
ORCID: https://orcid.org/0000-0001-8621-6520, López-Puertas, M.
ORCID: https://orcid.org/0000-0003-2941-7734, Lora, J. M.
ORCID: https://orcid.org/0000-0001-9925-1050, Rannou, P.
ORCID: https://orcid.org/0000-0003-0836-723X, Rodriguez, S.
ORCID: https://orcid.org/0000-0003-1219-0641, Teanby, N. A.
ORCID: https://orcid.org/0000-0003-3108-5775, Turtle, E. P., Achterberg, R. K., Alvarez, C., Davies, A. G., de Kleer, K.
ORCID: https://orcid.org/0000-0002-9068-3428, Doppmann, G., Fletcher, L. N.
ORCID: https://orcid.org/0000-0001-5834-9588, Hayes, A. G., Holler, B. J.
ORCID: https://orcid.org/0000-0002-6117-0164, Irwin, P. G. J.
ORCID: https://orcid.org/0000-0002-6772-384X, Jordan, C., King, O. R. T., Kutsop, N. W., Marlin, T. C., Melin, H.
ORCID: https://orcid.org/0000-0001-5971-2633, Milam, S. N., Molter, E. M., Moore, L.
ORCID: https://orcid.org/0000-0003-4481-9862, Nyffenegger-Péré, Y., O'Donoghue, J.
ORCID: https://orcid.org/0000-0002-4218-1191, O’Meara, J., Rafkin, S. C. R.
ORCID: https://orcid.org/0000-0001-7464-1319, Roman, M. T.
ORCID: https://orcid.org/0000-0001-8206-2165, Rostopchina, A., Rowe-Gurney, N.
ORCID: https://orcid.org/0000-0001-8692-5538, Schmidt, C., Schmidt, J.
ORCID: https://orcid.org/0000-0002-2617-5517, Sotin, C.
ORCID: https://orcid.org/0000-0003-3947-1072, Stallard, T. S.
ORCID: https://orcid.org/0000-0003-3990-670X, Stansberry, J. A.
ORCID: https://orcid.org/0000-0003-2434-5225 and West, R. A.
ORCID: https://orcid.org/0000-0002-4320-2599
(2025)
The atmosphere of Titan in late northern summer from JWST and Keck observations.
Nature Astronomy.
ISSN 2397-3366
doi: 10.1038/s41550-025-02537-3
Abstract/Summary
Saturn’s moon Titan undergoes a long annual cycle of 29.45 Earth years. Titan’s northern winter and spring were investigated in detail by the Cassini–Huygens spacecraft (2004–2017), but the northern summer season remains sparsely studied. Here we present new observations from the James Webb Space Telescope (JWST) and Keck II telescope made in 2022 and 2023 during Titan’s late northern summer. Using JWST’s mid-infrared instrument, we spectroscopically detected the methyl radical, the primary product of methane break-up and key to the formation of ethane and heavier molecules. Using the near-infrared spectrograph onboard JWST, we detected several non-local thermodynamic equilibrium CO and CO2 emission bands, which allowed us to measure these species over a wide altitude range. Lastly, using the near-infrared camera onboard JWST and Keck II, we imaged northern hemisphere tropospheric clouds evolving in altitude, which provided new insights and constraints on seasonal convection patterns. These observations pave the way for new observations and modelling of Titan’s climate and meteorology as it progresses through the northern fall equinox, when its atmosphere is expected to show notable seasonal changes.
Altmetric Badge
| Item Type | Article |
| URI | https://centaur.reading.ac.uk/id/eprint/122840 |
| Identification Number/DOI | 10.1038/s41550-025-02537-3 |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology |
| Publisher | Nature |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download