• Anstey, J., Kharin, V., & Sigmond, M. (2025): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the CanESM5 model at CCCma. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/01dac4c57559407fb40292389c386d30/
• Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric Harbingers of Anomalous Weather Regimes. Science, 294(5542), 581–584. doi:10.1126/science.1063315
• Baldwin, M. P., Stephenson, D. B., Thompson, D. W., Dunkerton, T. J., Charlton, A. J., & O’Neill, A. (2003). Stratospheric Memory and Skill of Extended-Range Weather Forecasts. Science, 301(5633), 636–640. doi:10.1126/science.1087143
• Baldwin, M. P., Birner, T., & Ayarzagüena, B. (2024). Tropospheric amplification of stratosphere–troposphere coupling. Quarterly Journal of the Royal Meteorological Society, 150(765), 5188–5205. doi:10.1002/qj.4864
• Barton, C. (2025): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the NAVGEM model at NRL. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/ecad5261e8d446bfa842b4b7a227d5b0/
• Beerli, R., & Grams, C. M. (2019). Stratospheric modulation of the large‐scale circulation in the Atlantic–European region and its implications for surface weather events. Quarterly Journal of the Royal Meteorological Society, 145(725), 3732–3750. doi:10.1002/qj.3653
• Butler, A. H., Lawrence, Z. D., Lee, S. H., Lillo, S. P., & Long, C. S. (2020). Differences between the 2018 and 2019 stratospheric polar vortex split events. Quarterly Journal of the Royal Meteorological Society, 146(732), 3503–3521. https://doi.org/10.1002/qj.3858
• Cassou, C. (2008). Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455(7212), 523–527. doi:10.1038/nature07286
• Charlton, A. J., & Polvani, L. M. (2007a), A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks. Journal of Climate, 20(3), 449–469, doi:10.1175/JCLI3996.1.
• Charlton, A. J., Polvani, L. M., Perlwitz, J., Sassi, F., Manzini, E., Shibata, K., et al. (2007b). A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations. Journal of Climate, 20(3), 470–488. doi:10.1175/jcli3994.1
• Charlton‐Perez, A. J., Ferranti, L., & Lee, R. W. (2018). The influence of the stratospheric state on North Atlantic weather regimes. Quarterly Journal of the Royal Meteorological Society, 144(713), 1140–1151. doi:10.1002/qj.3280
• Dawson, A. (2016). eofs, A Library for EOF Analysis of Meteorological, Oceanographic, and Climate Data. Journal of Open Research Software, 4(1). doi:10.5334/jors.122
• Domeisen, D. I. V., Grams, C. M., & Papritz, L. (2020). The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events. Weather and Climate Dynamics, 1(2), 373–388. doi:10.5194/wcd-1-373-2020
• Erner, I., & Karpechko, A. (2024). Factors influencing subseasonal predictability of northern Eurasian cold spells. Quarterly Journal of the Royal Meteorological Society, 150(762), 2955–2975. doi:10.1002/qj.4744
• Garfinkel, C. I., Lawrence, Z. D., Butler, A. H., Dunn-Sigouin, E., Erner, I., Karpechko, A. Y., et al. (2025). A process-based evaluation of biases in extratropical stratosphere–troposphere coupling in subseasonal forecast systems. Weather and Climate Dynamics, 6, 171–195. doi:10.5194/wcd-6-171-2025
• González‐Alemán, J. J., Grams, C. M., Ayarzagüena, B., Zurita‐Gotor, P., Domeisen, D. I. V., Gómara, I., et al. (2021). Tropospheric Role in the Predictability of the Surface Impact of the 2018 Sudden Stratospheric Warming Event. Geophysical Research Letters, 49(e2021GL095464). doi:10.1029/2021gl095464
• Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27(9), 1119–1152. doi:10.1002/joc.1499
• Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730). doi:10.1002/qj.3803
• Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. (2023a). ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), [Dataset]. doi:10.24381/cds.bd0915c6 (Accessed late 2024 thru early 2025)
• Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., et al. (2023b). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), [Dataset]. doi:10.24381/cds.adbb2d47 (Accessed late 2024 thru early 2025)
• Hersbach, H., Comyn-Platt, E., Bell, B., Berrisford, P., Biavati, G., Horányi, A., et al. (2023c): ERA5 post-processed daily-statistics on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), [Dataset]. doi:10.24381/cds.4991cf48 (Accessed late 2024 thru early 2025)
• Hitchcock, P. B., Butler, A., Charlton-Perez, A., Garfinkel, C. I., Stockdale, T., Anstey, J., et al. (2022). Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geoscientific Model Development, 15(13), 5073–5092. doi:10.5194/gmd-15-5073-2022
• Hitchcock, P., Polichtchouk, I., Stockdale, T. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the IFS model at ECMWF. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/d160e81ccf9842d0b1c0a25b56a5ddfa/
• Huang, W. T. K., Charlton-Perez, A., Lee, R. W., Neal, R., Sarran, C., & Sun, T. (2020). Weather regimes and patterns associated with temperature-related excess mortality in the UK: a pathway to sub-seasonal risk forecasting. Environmental Research Letters, 15(12), 124052. doi:10.1088/1748-9326/abcbba
• Kautz, L., Polichtchouk, I., Birner, T., Garny, H., & Pinto, J. G. (2020). Enhanced extended‐range predictability of the 2018 late‐winter Eurasian cold spell due to the stratosphere. Quarterly Journal of the Royal Meteorological Society, 146(727), 1040–1055. doi:10.1002/qj.3724
• Kim, H., Hyun, Y.-K. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the GloSea6-GC32 model at KMA. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/81516f7545ef4ba1b39ec87ed5d0e5f1/
• Knight, J., Scaife, A., Bett, P. E., Collier, T., Dunstone, N., Gordon, M., et al. (2021). Predictability of European Winters 2017/2018 and 2018/2019: Contrasting influences from the Tropics and stratosphere. Atmospheric Science Letters, 22(1), e1009. https://doi.org/10.1002/asl.1009
• Knight, J. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the GloSea6 model at UKMO. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/8fc98ddf822f464dbd8a9e89b2da063c/
• Kretschmer, M., Cohen, J., Matthias, V., Runge, J., & Coumou, D. (2018a). The different stratospheric influence on cold-extremes in Eurasia and North America. Npj Climate and Atmospheric Science, 1(1). doi:10.1038/s41612-018-0054-4
• Kretschmer, M., Coumou, D., Agel, L., Barlow, M., Tziperman, E., & Cohen, J. (2018b). More-Persistent Weak Stratospheric Polar Vortex States Linked to Cold Extremes. Bulletin of the American Meteorological Society, 99(1), 49–60. doi:10.1175/bams-d-16-0259.1
• Lee, S. H., Furtado, J. C., & Charlton‐Perez, A. J. (2019a). Wintertime North American Weather Regimes and the Arctic Stratospheric Polar Vortex. Geophysical Research Letters, 46(24), 14892–14900. doi:10.1029/2019gl085592
• Lee, R. W., Woolnough, S. J., Charlton‐Perez, A. J., & Vitart, F. (2019b). ENSO Modulation of MJO Teleconnections to the North Atlantic and Europe. Geophysical Research Letters, 46(22), 13535–13545. doi:10.1029/2019gl084683
• Lee, S. H., Charlton-Perez, A. J., Woolnough, S. J., & Furtado, J. C. (2022). How Do Stratospheric Perturbations Influence North American Weather Regime Predictions? Journal of Climate, 35(18), 5915–5932. https://doi.org/10.1175/jcli-d-21-0413.1
• Limpasuvan, V., Thompson, D. W. J., & Hartmann, D. L. (2004). The Life Cycle of the Northern Hemisphere Sudden Stratospheric Warmings. Journal of Climate, 17(13), 2584–2596. doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2
• Limpasuvan, V., Hartmann, D. L., Thompson, D. W. J., Jeev, K., & Yung, Y. L. (2005). Stratosphere-troposphere evolution during polar vortex intensification. Journal of Geophysical Research, 110(D24). doi:10.1029/2005jd006302
• Lin, H., Muncaster, R. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the GEM-NEMO model at ECCC. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/0760dcb81380402f8e7a1dcb20d1eec9/
• Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A. H., Collins, D. C., et al. (2020). Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond. Bulletin of the American Meteorological Society, 101(5), E608–E625. doi:10.1175/bams-d-18-0326.1
• Mastrangelo, D. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the GLOBO model at CNR-ISAC. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/181b2e501be0452984371d1c77fdab2a/
• Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., & Simpson, I. R. (2020). A Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden Stratospheric Warmings. Journal of Climate, 33(9), 3901–3917. doi:10.1175/jcli-d-19-0702.1
• Messori, G., & Dorrington, J. (2023). A Joint Perspective on North American and Euro‐Atlantic Weather Regimes. Geophysical Research Letters, 50(21), e2023GL104696. doi:10.1029/2023gl104696
• Messori, G., Kretschmer, M., Lee, S. H., & Wendt, V. (2022). Stratospheric downward wave reflection events modulate North American weather regimes and cold spells. Weather and Climate Dynamics, 3(4), 1215–1236. doi:10.5194/wcd-3-1215-2022
• Michelangeli, P.-A., Vautard, R., & Legras, B. (1995). Weather Regimes: Recurrence and Quasi Stationarity. Journal of the Atmospheric Sciences, 52(8), 1237–1256. doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
• Millin, O. T., Furtado, J. C., & Basara, J. B. (2022). Characteristics, Evolution, and Formation of Cold Air Outbreaks in the Great Plains of the United States. Journal of Climate, 35(14), 4585–4602. https://doi.org/10.1175/jcli-d-21-0772.1
• Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. Retrieved from http://jmlr.org/papers/v12/pedregosa11a.html
• Robertson, A. W., Vigaud, N., Yuan, J., & Tippett, M. K. (2020). Toward Identifying Subseasonal Forecasts of Opportunity Using North American Weather Regimes. Monthly Weather Review, 148(5), 1861–1875. doi:10.1175/mwr-d-19-0285.1
• Scaife, A. A., Karpechko, A. Yu., Baldwin, M. P., Brookshaw, A., Butler, A. H., Eade, R., et al. (2015). Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, 17(1), 51–56. doi:10.1002/asl.598
• Schutte, M. K., Portal, A., Lee, S. H., & Messori, G. (2025). Dynamics of stratospheric wave reflection over the North Pacific. Weather and Climate Dynamics, 6(2), 521–548. doi:10.5194/wcd-6-521-2025
• Sigmond, M., Scinocca, J. F., Kharin, V. V., & Shepherd, T. G. (2013). Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geoscience, 6(2), 98–102. doi:10.1038/ngeo1698
• Simpson, I., Richter, J. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the CESM2-CAM6 model at NCAR. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/ce8fb52804934952a00ef7d3d223d305/
• Specq, D. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the CNRM-CM 6.1 model at Météo France. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/201dac63fd1046e39299801dbf47dd3f/
• Son, S.-W., Hong, D.-C. (2024): Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): data produced by the GRIMs model at SNU. NERC EDS Centre for Environmental Data Analysis, [Dataset]. http://catalogue.ceda.ac.uk/uuid/8210180b4c664012831f8a66c934c004/
• Tripathi, O. P., Charlton-Perez, A., Sigmond, M., & Vitart, F. (2015). Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, 10(10), 104007. doi:10.1088/1748-9326/10/10/104007
• van der Wiel, K., Bloomfield, H. C., Lee, R. W., Stoop, L. P., Blackport, R., Screen, J. A., & Selten, F. M. (2019). The influence of weather regimes on European renewable energy production and demand. Environmental Research Letters, 14(9), 094010. doi:10.1088/1748-9326/ab38d3
• White, C. J., Domeisen, D. I. V., Acharya, N., Adefisan, E. A., Anderson, M. L., Aura, S., et al. (2022). Advances in the application and utility of subseasonal-to-seasonal predictions. Bulletin of the American Meteorological Society, 103(6), E1448–E1472. doi:10.1175/bams-d-20-0224.1
• White, I., Garfinkel, C. I., Gerber, E. P., Jucker, M., Hitchcock, P., & Rao, J. (2020). The generic nature of the tropospheric response to sudden stratospheric warmings. Journal of Climate, 33(13), 5589–5610. doi:10.1175/jcli-d-19-0697.1