1. Frumin, M. J., Bergman, N. A. & Holaday, D. A. Carbon dioxide and oxygen blood levels with a carbon dioxide controlled artificial
respirator. J. Am. Soc. Anesthesiol. 20, 313–320 (1959).
2. Mitamura, Y., Mikami, T. & Yamamoto, K. A dual control system for assisting respiration. Med. Biol. Eng. 13, 846–854 (1975).
3. Ritchie, R. G., Ernst, E. A., Pate, B. L., Pearson, J. & Sheppard, L. C. Closed-loop control of an anesthesia delivery system:
Development and animal testing. IEEE Trans. Biomed. Eng. 437–443 (1987).
4. Coon, R. L., Zuperku, E. J. & Kampine, J. P. Systemic arterial blood pH servocontrol of mechanical ventilation. Anesthesiology 49,
201–204 (1978).
5. Laubscher, T. P., Heinrichs, W., Weiler, N., Hartmann, G. & Brunner, J. X. An adaptive lung ventilation controller. IEEE Trans.
Biomed. Eng. 41, 51–59 (1994)
6. Karzai, W. & Schwarzkopf, K. Hypoxemia during one-lung ventilation: Prediction, prevention, and treatment. J. Am. Soc.
Anesthesiologists 110, 1402–1411 (2009).
7. Pfitzner, J. & Pfitzner, L. The theoretical basis for using apnoeic oxygenation via the non-ventilated lung during one-lung ventilation
to delay the onset of arterial hypoxaemia. Anaesth. Intensive Care 33, 794–800 (2005).
8. Cinnella, G. et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol. Scand.
52, 766–775 (2008).
9. Pavone, M., Verrillo, E., Onofri, A., Caggiano, S. & Cutrera, R. Ventilators and ventilatory modalities. Front. Pediatr. 8, 500 (2020).
10. Pelosi, P. et al. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit. Care 25, 1–10 (2021).
11. Keszler, M. & Abubakar, M. . K. Volume-targeted ventilation. Semin. Perinatol. 48, 151886 (2024).
12. Mojoli, F. et al. Timing of inspiratory muscle activity detected from airway pressure and flow during pressure support ventilation:
the waveform method. Crit. Care 26, 32 (2022).
13. Garmendia, O. et al. Low-cost, easy-to-build noninvasive pressure support ventilator for under-resourced regions: Open source
hardware description, performance and feasibility testing. Eur. Respirat. J. 55 (2020).
14. Jonkman, A. H. et al. Proportional modes of ventilation: Technology to assist physiology. Intensive Care Med. 46, 2301–2313
(2020).
15. Grieco, D. L. et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic
respiratory failure and ARDS. Intensive Care Med. 47, 851–866 (2021).
16. Morton, S. E. et al. Optimising mechanical ventilation through model-based methods and automation. Annu. Rev. Control. 48,
369–382 (2019).
17. Glapiński, J. & Jabłoński, I. Minimization of ventilator-induced lung injury in ARDS patients - Part I: Complex model of
mechanically ventilated ARDS lungs. Metrol. Meas. Syst. 24, 685–699 (2017).
18. Magin, R. Fractional calculus in bioengineering, part 1. Crit. Rev. Trade Biomed. Eng. 32, 1–104 (2004).
19. Weibel, E. R., Cournand, A. F. & Richards, D. W. Morphometry of the Human Lung Vol. 1 (Springer, Berlin, 1963).
20. Sauret, V., Goatman, K., Fleming, J. & Bailey, A. Semi-automated tabulation of the 3D topology and morphology of branching
networks using CT: Application to the airway tree. Phys. Med. Biol. 44, 1625–1638 (1999).
21. Sauret, V., Halson, P., Brown, I., Fleming, J. & Bailey, A. Study of the three-dimensional geometry of the central conducting airways
in man using computed tomographic (CT) images. J. Anat. 200, 123–134 (2002).
22. Ionescu, C. M., Segers, P. & De Keyser, R. Mechanical properties of the respiratory system derived from morphologic insight. IEEE
Trans. Biomed. Eng. 56, 949–959 (2008).
23. Ionescu, C. M., Muntean, I., Tenreiro-Machado, J., De Keyser, R. & Abrudean, M. A theoretical study on modeling the respiratory
tract with ladder networks by means of intrinsic fractal geometry. IEEE Trans. Biomed. Eng. 57, 246–253 (2009).
24. Ionescu, C.-M., Kosiński, W. & De Keyser, R. Viscoelasticity and fractal structure in a model of human lungs. Arch. Mech. 62,
21–48 (2010).
25. Ionescu, C. M., Tenreiro Machado, J. A. & De Keyser, R. Modelling of the lung impedance using a fractional-order ladder network
with constant phase elements. IEEE Trans. Biomed. Circuits Syst. 5, 83–89 (2011).
26. Ionescu, C. & De Keyser, R. Parametric models for characterizing respiratory input impedance. J. Med. Eng. Technol. 32, 315–324
(2008).
27. Torvik, P. J. & Bagley, R. L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51,
294–298 (1984).
28. Adolfsson, K., Enelund, M. & Olsson, P. On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 9, 15–34
(2005).
29. Oustaloup, A., Levron, F., Mathieu, B. & Nanot, F. M. Frequency-band complex noninteger differentiator: Characterization and
synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47, 25–39 (2000).
30. Elwakil, A. S. Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10,
40–50 (2010).
31. Jossinet, J. Elementary electrodynamics. Technol. Health Care 16, 465–474 (2008).
32. Ghita, M., Copot, D. & Ionescu, C. M. Lung cancer dynamics using fractional order impedance modeling on a mimicked lung
tumor setup. J. Adv. Res. 32, 61–71 (2021).
33. D’Orsi, L., Borri, A. & De Gaetano, A. Mathematical modeling of lung mechanics and pressure-controlled ventilation design for
barotrauma minimization: A numerical simulation study. Int. J. Robust Nonlinear Control (2024) (in press).
34. Almeida, D. I. R. et al. Modeling and control of an invasive mechanical ventilation system using the active disturbances rejection
control structure. ISA Trans. 129, 345–354 (2022).
35. García-Violini, D., Faedo, N. & Cafiero, E. Modelling and pressure control of the expiratory cycle for mechanical ventilation
systems. Control. Eng. Pract. 118, 104976 (2022).
36. Reinders, J. et al. Repetitive control for Lur’e-type systems: Application to mechanical ventilation. IEEE Trans. Control Syst. Technol.
31, 1819–1829 (2023).
37. Poor, H. Basics of Mechanical Ventilation (Springer, 2018).
38. Borrello, M. The application of controls in critical care ventilation. In Proceedings IEEE Conference on Control Technology and
Applications 701–718 (2021).
39. Weitenberg, E. et al. Robust decentralized secondary frequency control in power systems: Merits and tradeoffs. IEEE Trans. Autom.
Control 64, 3967–3982 (2018).
40. Oostveen, E. et al. The forced oscillation technique in clinical practice: Methodology, recommendations and future developments.
Eur. Respir. J. 22, 1026–1041 (2003).
41. Lorenzo, C. F. & Hartley, T. T. Initialization in fractional order systems. In Proceedings 2001 European Control Conference (ECC)
1471–1476 (2001).
42. Trigeassou, J.-C., Maamri, N., Sabatier, J. & Oustaloup, A. State variables and transients of fractional order differential systems.
Comput. Math. Appl. 64, 3117–3140 (2012).
43. Trigeassou, J.-C., Maamri, N. & Oustaloup, A. The infinite state approach: Origin and necessity. Comput. Math. Appl. 66, 892–907
(2013).
44. Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory (SIAM, 1994).
45. Chilali, M. & Gahinet, P. H∞ design with pole placement constraints: An LMI approach. IEEE Trans. Autom. Control 41, 358–367
(1996).
46. Chilali, M., Gahinet, P. & Apkarian, P. Robust pole placement in LMI regions. IEEE Trans. Autom. Control 44, 2257–2270 (1999).
47. Zhang, X. & Chen, Y. D-stability based LMI criteria of stability and stabilization for fractional order systems. In Proceedings
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference vol. 57199, p.
V009T07A029 (2015).
48. Zhang, X. & Zhang, Y. D-admissibility criteria of singular fractional order systems. In Proceedings 2019 Chinese Control Conference
(CCC) 1253–1257 (2019).
49. Matignon, D. Stability results for fractional differential equations with applications to control processing. In Proceedings IMACS -
IEEE SMC Computational Engineering in Systems Applications, Lille vol. 2, pp. 963–968 (1996).
50. Sabatier, J., Moze, M. & Farges, C. LMI stability conditions for fractional order systems. Comput. Math. Appl. 59, 1594–1609
(2010)
51. Lu, J.-G. & Chen, Y.-Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α: The
0 <α< 1 case. IEEE Trans. Autom. Control 55, 152–158 (2010).
52. Zhang, S., Yu, Y. & Yu, J. LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn.
Syst. 28, 2423–2433 (2016).
53. Ogata, K. Modern Control Engineering. Prentice-Hall Electrical Engineering Series. Instrumentation and Controls Series illustrat edn.
(Prentice Hall, 2010).
54. Dorf, R. C. & Bishop, R. H. Modern Control Systems 13th global edition. (Pearson Education, 2017).
55. Mackenroth, U. Robust Control Systems: Theory and Case Studies (Springer, 2004).
56. Matignon, D. & d’Andrea Novel, B. Observer-based controllers for fractional differential systems. In Proceedings 36th IEEE
Conference on Decision and Control vol. 5, pp. 4967–4972 (1997).
57. Lan, Y.-H., Huang, H.-X. & Zhou, Y. Observer-based robust control of a (1 ≤ a < 2) fractional-order uncertain systems: A
linear matrix inequality approach. IET Control Theory Appl. 6, 229–234 (2012).
58. Qiu, J. & Ji, Y. Observer-based robust controller design for nonlinear fractional-order uncertain systems via LMI. Math. Probl. Eng.
2017, 8217126 (2017).
59. Charef, A. Analogue realisation of fractional-order integrator, differentiator and fractional PIλDµ controller. In IEE Proceedings -
Control Theory and Applications, vol. 153, 714–720 (2006).
60. Tolba, M. F., Said, L. A., Madian, A. H. & Radwan, A. G. FPGA implementation of the fractional order integrator/differentiator:
Two approaches and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 1484–1495 (2019).
61. Tepljakov, A. FOMCON toolbox for MATLAB https://github.com/extall/fomcon-matlab/releases/tag/v1.50.4, github (2024).
62. Tepljakov, A. FOMCON: Fractional-order modeling and control toolbox. In Fractional-order Modeling and Control of Dynamic
Systems 107–129 (2017).
63. Löfberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings 2004 IEEE International Conference on
Robotics and Automation 284–289 (2004).
64. Sturm, J. F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653
(1999).
65. Baker, D. J. Artificial Ventilation: A Basic Clinical Guide 2nd edn. (Springer, 2020).
66. Acharya, D. & Das, D. K. A novel PID controller for pressure control of artificial ventilator using optimal rule based fuzzy inference
system with RCTO algorithm. Sci. Rep. 13, 9281 (2023).
67. Castaño, J. et al. Electropneumatic system for the simulation of the pulmonary viscoelastic effect in a mechanical ventilation
scenario. Sci. Rep. 13, 21275 (2023).
68. Guo, J., Yin, Y. & Peng, G. Fractional-order viscoelastic model of musculoskeletal tissues: Correlation with fractals. Proc. R. Soc. A.
Math. Phys. Eng. Sci. 477, 20200990 (2021).
69. Yang, X.-J., Gao, F. & Ju, Y. General Fractional Derivatives with Applications in Viscoelasticity (Academic Press, 2020).
70. Shitikova, M. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A review. Mech. Solids 1–33
(2022).
71. Kauczor, H.-U., Hanke, A. & van Beek, E. J. Assessment of lung ventilation by MR imaging: Current status and future perspectives.
Eur. Radiol. 12, 1962–1970 (2002).
72. Willmering, M. M. et al. Improved pulmonary 129Xe ventilation imaging via 3D-spiral UTE MRI. Magn. Reson. Med. 84, 312–320
(2020).
73. Hurtado, D. E. et al. Progression of regional lung strain and heterogeneity in lung injury: Assessing the evolution under spontaneous
breathing and mechanical ventilation. Ann. Intensive Care 10, 1–10 (2020).
74. Galvão, R. K. H. & Hadjiloucas, S. Measurement and control of emergent phenomena emulated by resistive-capacitive networks,
using fractional-order internal model control and external adaptive control. Rev. Sci. Instrum. 90 (2019).
75. Jacyntho, L. A. et al. Identification of fractional-order transfer functions using a step excitation. IEEE Trans. Circuits Syst. II Express
Briefs 62, 896–900 (2015).
76. Bonfanti, A., Kaplan, J. L., Charras, G. & Kabla, A. Fractional viscoelastic models for power-law materials. Soft Matter 16, 6002–
6020 (2020).
77. Deng, Q., Qiu, D., Xie, Z., Zhang, B. & Chen, Y. Online SOC estimation of supercapacitor energy storage system based on
fractional-order model. IEEE Trans. Instrum. Meas. 72, 1–10 (2023).