Accessibility navigation


Uncertainty in geomorphological responses to climate change

Harrison, S., Mighall, T., Stainforth, D. A., Allen, P., Macklin, M., Anderson, E., Knight, J., Mauquoy, D., Passmore, D., Rea, B., Spagnolo, M. and Shannon, S. ORCID: https://orcid.org/0000-0002-7644-2724 (2019) Uncertainty in geomorphological responses to climate change. Climatic Change, 156 (1-2). pp. 69-86. ISSN 0165-0009

[thumbnail of ireland.pdf] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s10584-019-02520-8

Abstract/Summary

Successful adaptation to climate change at regional scales can often depend on understanding the nature of geomorphological responses to climate change at those scales. Here we use evidence from landscapes which are known to be environmentally sensitive to show that geomorphological change in response to shifts in climate can be highly nonlinear. Our study sites are two mountain massifs on the western coast of Ireland. Both sites have similar geological and Pleistocene glacial histories and are similar topographically, geomorphologically and in their climate histories. We show that despite these similarities their response to late Holocene, climate change has differed. Both massifs have responded to short-term climate changes over the last 4500 years that are considered to have been uniform across the region, but these climate changes have resulted in highly differentiated and nonlinear landscape responses. We argue this reflects nonlinearity in the forcing–response processes at such scales and suggests that current approaches to modelling the response of such systems to future climate change using numerical climate models may not accurately capture the landscape response. We end by discussing some of the implications for obtaining decision-relevant predictions of landscape responses to climatic forcing and for climate change adaptation and planning, using regional climate models.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
ID Code:125144
Publisher:Springer

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation