Ali, S., Dan, L., Fu, C., and Yang, Y.: Performance of convective parameteriza505
tion schemes in Asia using RegCM: Simulations in three typical regions for the pe506
riod 1998–2002, Advances in Atmospheric Sciences, 32, 715–730, https://doi.org/
34
507 10.1007/s00376-014-4158-4, 2015.
508 Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M. W., Horvarth, K., Dudhia, J.,
509 Satomura, T., Mu¨ller, M., Za¨ngl, G., Takemi, T., Serafin, S., Schmidli, J., and Schneider,
510 S.: Issues in high-resolution atmosphericmodeling in complex topography – TheHiRCoT
511 workshop, Croatian Meteorological Journal, 47, 3–11, 2012.
512 Bachmann, K., Keil, C., Craig, G. C.,Weissmann,M., andWelzbacher, C.A.: Predictability
513 of Deep Convection in Idealized and Operational Forecasts: Effects of Radar Data
514 Assimilation, Orography, and SynopticWeather Regime, MonthlyWeather Review, 148,
515 63–81, https://doi.org/10.1175/MWR-D-19-0045.1, 2020.
516 Bao, Y.: Simulations of summer monsoon climate over East Asia with a Regional Climate
517 Model (RegCM) using Tiedtke convective parameterization scheme (CPS), Atmospheric
518 Research, 134, 35–44, https://doi.org/10.1016/j.atmosres.2013.06.009, 2013.
519 Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction,
520 Nature, 525, 47–55, 2015.
521 Bhatla, R.,Mandal, B., Verma, S., Ghosh, S., andMall, R.K.: Performance of Regional Cli522
mate Model in Simulating Monsoon Onset Over Indian Subcontinent, Pure and Applied
523 Geophysics, 176, 409–420, https://doi.org/10.1007/s00024-018-1910-1, 2019.
524 Bopape, M.-J. M., Waitolo, D., Plant, R. S., Phaduli, E., Nkonde, E., Simfukwe, H., Mkan35
525 dawire, S., Rakate, E., and Maisha, R.: Sensitivity of Simulations of Zambian Heavy
526 Rainfall Events to the Atmospheric Boundary Layer Schemes, Climate, 9, https://doi.org/
527 10.3390/cli9020038, 2021.
528 Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution Requirements for the
529 Simulation of Deep Moist Convection, Monthly Weather Review, 131, 2394–2416,
530 https://doi.org/10.1175/1520-0493(2003)131⟨2394:RRFTSO⟩2.0.CO;2, 2003.
531 Cai, Y., Xu, Z., Gong, X., Zhong, R., Huang, G., and Long, H.: Evaluation of precipitation
532 forecast of CMA-MESO model in summer of 2021, Journal of Arid Meteorology, 41,
533 503–515, https://doi.org/10.11755/j.issn.1006-7639(2023)-03-0503, 2023.
534 Chen, F., Janjic, Z., and Mitchell, K.: Impact of Atmospheric Surface-layer Parameteri535
zations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model, Boundary
536 Layer Meteorology, 85, 391–421, 1997.
537 Chen,Y.,Wang, L., Leung, J.C.-H.,Xu,D., Chen, J., and Zhang, B.: Systematic diurnal bias
538 of the CMA-MESO model in southern China: Characteristics and correction, Frontiers
539 in Earth Science, 11, https://doi.org/10.3389/feart.2023.1101809, 2023a.
540 Chen, Y., Yang, X., Lu¨, Y., Wen, J., and Zhu, J.: Comparative Analysis of Convection
541 Permitting Model and Cumulus Parameterization for Simulation of Summer Precipi542
tation over Qinghai-Xizang (Tibetan) Plateau, Plateau Meteorology, 42, 1429–1443,
543 https://doi.org/10.7522/j.issn.1000-0534.2023.00016, 2023b.
36
544 Christopoulos, C. and Schneider, T.: Assessing Biases and Climate Implications of the
545 Diurnal Precipitation Cycle in Climate Models, Geophysical Research Letters, 48,
546 e2021GL093 017, https://doi.org/10.1029/2021GL093017, 2021.
547 Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.: Convection548
permitting models: A step-change in rainfall forecasting, Meteorological Applications,
549 23, 165–181, 2016.
550 Doswell, C.A., Brooks,H. E., andMaddox, R.A.: Flash Flood Forecasting: An Ingredients-
551 Based Methodology, Weather and Forecasting, 11, 560–581, https://doi.org/10.1175/
552 1520-0434(1996)011⟨0560:FFFAIB⟩2.0.CO;2, 1996.
553 Ekstro¨m, M.: Metrics to identify meaningful downscaling skill in WRF simulations of in554
tense rainfall events, EnvironmentalModelling & Software, 79, 267–284, https://doi.org/
555 10.1016/j.envsoft.2016.01.012, 2016.
556 Evans, J. P., Ekstro¨m, M., and Ji, F.: Evaluating the performance of a WRF physics
557 ensemble over South-East Australia, Climate Dynamics, 39, 1241–1258, https://doi.org/
558 10.1007/s00382-011-1244-5, 2012.
559 Farina, S. and Zardi, D.: Understanding Thermally Driven Slope Winds: Recent Advances
560 and Open Questions, Boundary Layer Meteorology, 189, 5–52, https://doi.org/10.1007/
561 s10546-023-00821-1, 2023.
37
Field, P. R., Bro562 z˘kova´, R., Chen, M., Dudhia, J., Lac, C., Hara, T., Honnert, R., Olson,
563 J., Siebesma, P., de Roode, S., Tomassini, L., Hill, A., and McTaggart-Cowan, R.:
564 Exploring the convective grey zone with regional simulations of a cold air outbreak,
565 Quarterly Journal of the Royal Meteorological Society, 143, 2537–2555, https://doi.org/
566 10.1002/qj.3105, 2017.
567 Frogner, I.-L., Singleton, A. T., Koltzow, M. O., and Andrae, U.: Convection-permitting
568 ensembles: Challenges related to their design and use, Quarterly Journal of the Royal
569 Meteorological Society, 145, 90–106, https://doi.org/10.1002/qj.3525, 2019.
570 Gao, Y., Chen, F., and Jiang, Y.: Evaluation of a Convection-Permitting Modeling of
571 Precipitation over the Tibetan Plateau and Its Influences on the Simulation of Snow-
572 Cover Fraction, Journal of Hydrometeorology, 21, 1531–1548, https://doi.org/10.1175/
573 JHM-D-19-0277.1, 2020.
574 Go´mez-Navarro, J. J., Raible, C. C., Bozhinova, D., Martius, O., Valero, J. A. G., and
575 Monta´vez, J. P.: A new region-aware bias-correction method for simulated precipita576
tion in areas of complex orography, Geoscience Model Development, 11, 2231–2247,
577 https://doi.org/10.5194/gmd-11-2231-2018, 2018.
578 Gowan, T. M., Steenburgh, W. J., and Schwartz, C. S.: Validation of Mountain Pre579
cipitation Forecasts from the Convection-Permitting NCAR Ensemble and Operational
38
Forecast Systems 580 over theWestern United States,Weather and Forecasting, 33, 739–765,
581 https://doi.org/10.1175/WAF-D-17-0144.1, 2018.
582 Guo, Z., Fang, J., Sun, X., Yang, Y., and Tang, J.: Sensitivity of Summer Precipitation Sim583
ulation to Microphysics Parameterization Over Eastern China: Convection-Permitting
584 Regional Climate Simulation, Journal of Geophysical Research: Atmospheres, 124,
585 9183–9204, https://doi.org/10.1029/2019JD030295, 2019.
586 Hagelin, S., Son, J., Swinbank, R., McCabe, A., Roberts, N., and Tennant, W.: The
587 Met Office convective-scale ensemble, MOGREPS-UK, Quarterly Journal of the Royal
588 Meteorological Society, 143, 2846–2861, https://doi.org/10.1002/qj.3135, 2017.
589 Hanley, K. E., Plant, R. S., Stein, T. H. M., Hogan, R. J., Nicol, J. C., Lean, H. W.,
590 Halliwell, C., and Clark, P. A.: Mixing-length controls on high-resolution simulations of
591 convective storms, Quarterly Journal of the RoyalMeteorological Society, 141, 272–284,
592 https://doi.org/10.1002/qj.2356, 2015.
593 Heredia, M. B., Junquas, C., Prieur, C., and Condom, T.: New Statistical Methods
594 for Precipitation Bias Correction Applied to WRF Model Simulations in the Anti595
sana Region, Ecuador, Journal of Hydrometeorology, 19, 2021–2040, https://doi.org/
596 10.1175/JHM-D-18-0032.1, 2018.
597 Huang, L., Deng, L., Wang, R., Zhuang, Z., Jiang, Y., Xu, Z., Zhu, L., Zhang, J., Wang,
598 L., Yu, F., Sun, Q., Wang, D., Wang, H., Zhou, F., and Xu, G.: Key technologies of
39
599 CMA-MESO and application to operational forecast, Journal of Applied Meteorological
600 Science, 33, 641–654, https://doi.org/10.11898/1001-7313.20220601, 2022.
601 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and
602 Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the
603 AER radiative transfer models, Journal of Geophysical Research: Atmospheres, 113,
604 https://doi.org/10.1029/2008JD009944, 2008.
605 Janjic´, Z. I.: The Step-Mountain Eta CoordinateModel: Further Developments of the Con606
vection, Viscous Sublayer, and Turbulence Closure Schemes, Monthly Weather Review,
607 122, 927 – 945, https://doi.org/10.1175/1520-0493(1994)122⟨0927:TSMECM⟩2.0.CO;
608 2, 1994.
609 Karki, R., ul Hasson, S., Gerlitz, L., Talchabhadel, R., Schenk, E., Schickhoff, U., Scholten,
610 T., and Bo¨hner, J.: WRF-based simulation of an extreme precipitation event over the
611 Central Himalayas: Atmospheric mechanisms and their representation by microphysics
612 parameterization schemes, Atmospheric Research, 214, 21–35, https://doi.org/10.1016/
613 j.atmosres.2018.07.016, 2018.
614 Klasa, C., Arpagaus, M., Walser, A., and Wernli, H.: An evaluation of the convection615
permitting ensemble COSMO-E for three contrasting precipitation events in Switzerland,
616 Quarterly Journal of the Royal Meteorological Society, 144, 744–764, https://doi.org/
617 10.1002/qj.3245, 2018.
40
Lean, H.W., Clark, P. A., 618 Dixon,M., Roberts, N.M., Fitch, A., Forbes, R., andHalliwell, C.:
619 Characteristics of high-resolution versions of theMetOfficeUnifiedModel for forecasting
620 convection over the United Kingdom, Monthly Weather Review, 136, 3408–3424, 2008.
621 Li, F., Zou, H., Zhou, L., Ma, S., Li, P., Zhu, J., and Zhang, Y.: Study of Boundary
622 Layer Parameterization Schemes’Applicability ofWRFModel over ComplexUnderlying
623 Surfaces in Southeast Tibet, Plateau Meteorology, 36, 340–357, https://doi.org/10.7522/
624 j.issn.1000-0534.2016.00041, 2017.
625 Liu, H., Liu, X., Liu, C., and Yun, Y.: High-resolution regional climate model626
ing of warm-season precipitation over the Tibetan Plateau: Impact of grid spacing
627 and convective parameterization, Atmospheric Research, 281, 106 498, https://doi.org/
628 10.1016/j.atmosres.2022.106498, 2023.
629 Liu, L., Zhang, X.-Z., and Ma, Y.-M.: Review of WRF for weather and climate change
630 over the Tibetan Plateau, Advances in Climate Change Research, https://doi.org/10.1016/
631 j.accre.2025.10.001, 2025.
632 Ma, M., Hui, P., Liu, D., Zhou, P., and Tang, J.: Convection-permitting regional cli633
mate simulations over Tibetan Plateau: re-initialization versus spectral nudging, Climate
634 Dynamics, 58, 1719–1735, https://doi.org/10.1007/s00382-021-05988-2, 2022.
635 Ma, W. and Ma, Y.: Modeling the influence of land surface flux on the regional climate of
41
636 the Tibetan Plateau, Theoretical and Applied Climatology, 125, 45–52, https://doi.org/
637 10.1007/s00704-015-1495-x, 2016.
638 Ma, W.-D., Liu, F.-G., Zhou, Q., Chen, Q., Liu, F., and Chen, Y.-P.: Characteristics of
639 extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017, Journal Of
640 Natural Resources, 35, 3039–3050, https://doi.org/10.31497/zrzyxb.20201218, 2020.
641 Ma, W.-D., Liu, F.-G., Zhou, Q., Chen, Q., Zhang, C., Liu, F., Li, Y., and Zhao, P.:
642 Estimation of Critical Rainfall for Flood Disasters in the Qinghai-Tibet Plateau, Journal
643 of Resources and Ecology, 12, 600–608, https://doi.org/10.5814/j.issn.1674-764x.2021.
644 05.003, 2021.
645 McMillen, J. D. and Steenburgh, W. J.: Impact of Microphysics Parameterizations on
646 Simulations of the 27 October 2010 Great Salt Lake–Effect Snowstorm, Weather and
647 Forecasting, 30, 136–152, https://doi.org/10.1175/WAF-D-14-00060.1, 2015.
648 McNider, R. T. and Pielke, R. A.: Numerical Simulation of Slope and Mountain Flows,
649 Journal of Climate and Applied Meteorology, 23, 1441–1453, 1984.
650 National Centers for Environmental Prediction: NCEP GFS 0.25 Degree Global Forecast
651 Grids Historical Archive, https://rda.ucar.edu/datasets/dsd084001/, 2015.
652 Oke, T. R.: Boundary Layer Climates, Routledge, 2nd edn., 435pp, 1987.
653 Ou, T., Chen, D., Tang, J., Lin, C., Wang, X., Kukulies, J., and Lai, H.-W.: Wet bias of
42
summer 654 precipitation in the northwestern Tibetan Plateau in ERA5 is linked to overes655
timated lower-level southerly wind over the plateau, Climate Dynamics, 61, 2139–2153,
656 https://doi.org/10.1007/s00382-023-06672-3, 2023.
657 Plant, R. S.: A review of the theoretical basis for bulk mass flux convective pa658
rameterization, Atmospheric Chemistry and Physics, 10, 3529–3544, https://doi.org/
659 10.5194/acp-10-3529-2010, 2010.
660 Prein, A. F., Ban, N., Ou, T., Tang, J., Sakaguchi, K., Collier, E., Jayanarayanan, S., Li, L.,
661 Sobolowski, S., Chen, X., Zhou, X., Lai, H.-W., Sugimoto, S., Zou, L., ul Hasson, S.,
662 Ekstrom, M., Pothapakula, P. K., Ahrens, B., Stuart, R., Steen-Larsen, H. C., Leung, R.,
663 Belusic, D., Kukulies, J., Curio, J., and Chen, D.: Towards Ensemble-Based Kilometer-
664 Scale Climate Simulations over the Third Pole Region, Climate Dynamics, 60, 4055–
665 4081, https://doi.org/10.1007/s00382-022-06543-3, 2023.
666 Sato, T., Yoshikane, T., Satoh, M., Miura, H., and Fujinami, H.: Resolution dependency
667 of the diurnal cycle of convective clouds over the Tibetan Plateau in a mesoscale model,
668 Journal of the Meteorological Society of Japan, 86A, 17–31, https://doi.org/10.2151/
669 jmsj.86A.17, 2008.
670 Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R., Kong, F., Thomas,
671 K. W., Levit, J. J., Coniglio, M. C., and Wandishin, M. S.: Toward Improved
672 Convection-Allowing Ensembles: Model Physics Sensitivities and Optimizing Prob43
673 abilistic Guidance with Small Ensemble Membership, Weather and Forecasting, 25,
674 263–280, https://doi.org/10.1175/2009WAF2222267.1, 2010.
675 Seity, Y., Brousseau, P., Malardel, S., Hello, G., Be´nard, P., Bouttier, F., Lac, C., and Mas676
son, V.: The AROME-France Convective-Scale Operational Model, Monthly Weather
677 Review, 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.
678 Selz, T. and Craig, G. C.: Upscale Error Growth in a High-Resolution Simulation of
679 a Summertime Weather Event over Europe, Monthly Weather Review, 143, 813–827,
680 https://doi.org/10.1175/MWR-D-14-00140.1, 2015.
681 Shen, J., Xue, H., Ge, F., and Zhang, J.: Understanding heavy precipitation prediction
682 bias in the Sichuan Basin based on the China Meteorological Administration operational
683 mesoscale model, Quarterly Journal of the Royal Meteorological Society, 151, e4966,
684 https://doi.org/10.1002/qj.4966, 2025.
685 Shen, X., Wang, J., Li, Z., Chen, D., and Gong, J.: Research and Operational Development
686 of Numerical Weather Prediction in China, Journal of Meteorological Research, 34,
687 675–698, https://doi.org/10.1007/s13351-020-9847-6, 2020.
688 Shi, W., Zhu, K., Li, X., and Zhang, B.: Evaluation of Precipitation Forecast by the
689 Operational China Meteorological Administration Mesoscale Model During the 2020
690 Meiyu Period, Journal of Geophysical Research: Atmospheres, 129, e2023JD039 156,
691 https://doi.org/10.1029/2023JD039156, 2024.
44
Skamarock, 692 W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang,
693 W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A Description
694 of the Advanced Research WRF Version 4, Tech. Rep. NCAR/TN-556+STR, NCAR,
695 https://doi.org/doi:10.5065/1dfh-6p97, 145pp, 2019.
696 Solano-Farias, F., Garc´ıa-Valdecasas Ojeda,M., Donaire-Montan˜o, D., Rosa-Ca´novas, J. J.,
697 Castro-D´ıez, Y., Esteban-Parra, M. J., and Ga´miz-Fortis, S. R.: Assessment of physical
698 schemes forWRF model in convection-permitting mode over southern Iberian Peninsula,
699 Atmospheric Research, 299, 107 175, https://doi.org/10.1016/j.atmosres.2023.107175,
700 2024.
701 Song, J., Song, F., Feng, Z., Leung, L. R., Li, C., and Wu, L.: Realistic Precipitation
702 Diurnal Cycle in Global Convection-Permitting Models by Resolving Mesoscale Con703
vective Systems, Geophysical Research Letters, 51, e2024GL109 945, https://doi.org/
704 10.1029/2024GL109945, 2024.
705 Sun, H.W., Gao, Q. Q., andWen, X. H.: Analysis and Evaluation of Extreme Precipitation
706 Events over the Qinghai-Xizang Plateau, Open Access Library Journal, 11, e11 865,
707 https://doi.org/10.4236/oalib.1111865, 2024.
708 Taylor, C. M., Gounou, A., Guichard, F., Harris, P. P., Ellis, R. J., Couvreux, F., and
709 De Kauwe, M.: Frequency of Sahelian storm initiation enhanced over mesoscale soil45
710 moisture patterns, Nature Geoscience, 4, 430–433, https://doi.org/10.1038/ngeo1173,
711 2011.
712 Thompson, G., Field, P. R., Rasmussen, R.M., andHall,W.D.: Explicit Forecasts ofWinter
713 Precipitation Using an Improved BulkMicrophysics Scheme. Part II: Implementation of a
714 NewSnowParameterization,MonthlyWeather Review, 136, 5095 – 5115, https://doi.org/
715 10.1175/2008MWR2387.1, 2008.
716 Tiedtke,M.: A ComprehensiveMass Flux Scheme for Cumulus Parameterization in Large-
717 Scale Models, Monthly Weather Review, 117, 1779 – 1800, https://doi.org/10.1175/
718 1520-0493(1989)117⟨1779:ACMFSF⟩2.0.CO;2, 1989.
719 Tyagi, B., Magliulo, V., Finardi, S., Gasbarra, D., Carlucci, P., Toscano, P., Zaldei, A.,
720 Riccio, A., Calori, G., D’Allura, A., and Gioli, B.: Performance Analysis of Planetary
721 Boundary Layer Parameterization Schemes inWRFModeling Set Up over Southern Italy,
722 Atmosphere, 9, https://doi.org/10.3390/atmos9070272, 2018.
723 Wan, Z., Sun, S., Zhao, B., and Chen, Q.: Evaluation and Error Analysis of the July 2021
724 Extremely Severe Rainstorm in Henan Province Simulated by CMA-MESO Model, Me725
teorologicalMonthly, 50, 33–47, https://doi.org/10.7519/j.issn.1000-0526.2023.062101,
726 2024.
727 Warren, R. A., Kirshbaum, D. J., Plant, R. S., and Lean, H. W.: A ’Boscastle-type’ quasi46
stationary convective system 728 over the UK Southwest Peninsula, Quarterly Journal of the
729 Royal Meteorological Society, 140, 240–257, 2014.
730 Weisman, M. L., Davis, C., Wang, W., Manning, K. W., and Klemp, J. B.: Experiences
731 with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model, Weather and
732 Forecasting, 23, 407–437, https://doi.org/10.1175/2007WAF2007005.1, 2008.
733 Xie, B., Fung, J. C. H., Chan, A., and Lau, A.: Evaluation of nonlocal and local plan734
etary boundary layer schemes in the WRF model, Journal of Geophysical Research:
735 Atmospheres, 117, https://doi.org/10.1029/2011JD017080, 2012.
736 Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary Layer
737 Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus
738 Parameterization Scheme, Monthly Weather Review, 139, 3489 – 3513, https://doi.org/
739 10.1175/MWR-D-10-05091.1, 2011.
740 Zhang, Y., Deng, C., Xu, W., Zhuang, Y., Jiang, L., Jiang, C., Guan, X., Wei, J., Ma, M.,
741 Chen, Y., Peng, J., and Gao, L.: Long-term variability of extreme precipitation with
742 WRF model at a complex terrain River Basin, Scientific Reports, 15, 156, https://doi.org/
743 10.1038/s41598-024-84076-x, 2025.
744 Zheng, Y., Alapaty, K., Herwehe, J. A., Del Genio, A. D., and Niyogi, D.: Improving
745 High-ResolutionWeather Forecasts Using theWeather Research and Forecasting (WRF)
47
Model with 746 an Updated Kain–Fritsch Scheme, Monthly Weather Review, 144, 833–860,
747 https://doi.org/10.1175/MWR-D-15-0005.1, 2016.
748 Zhou, P., Shao, M., Ma, M., Ou, T., and Tang, J.: WRF gray-zone dynamical downscaling
749 over the Tibetan Plateau during 1999–2019: model performance and added value, Climate
750 Dynamics, 61, 1371–1390, https://doi.org/10.1007/s00382-022-06631-4, 2023.
751 Zhu, K. and Xue, M.: Evaluation of WRF-based convection-permitting multi-physics
752 ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing,
753 Advances in Atmospheric Sciences, 33, 1240–1258, 2016.