Glycol methyl ether and glycol amine substituted titanocenes as antitumor agentsStrohfeldt, K., Muller-Bunz, H., Pampillon, C., Sweeney, N.J. and Tacke, M. (2006) Glycol methyl ether and glycol amine substituted titanocenes as antitumor agents. European Journal of Inorganic Chemistry (22). pp. 4621-4628. ISSN 1434-1948 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/ejic.200600586 Abstract/Summary6-[4-(2-Methoxyethoxy)phenyl]fulvene (3a) and 6-(4-[2-(di-methylamino)ethoxy]phenyl)fulvene (3b) were prepared as starting materials for the synthesis of three dofferent classes of titanocenes, which are ansa-titanocenes, diarylmethyl-substituted titanicenes and benzyl-substituted titanocenes and benyzyl-subtituted titanocenes. Because the synthetic possibilities seem to be limited, only ansa-titanocene {1,2-bis(cyclopentadienyl)-1,2-bis[4-(2-methoxyethoxy)phenyl]ethanediyl}titanium dichloride (4a) and benzyl-substituted titanocene bis-{[4-(2-methoxyethoxy)benzyl]cyclopentadienyl}titantium(IV) dichloride (6a) were obtained and characterised. The change in the substitution pattern f the phenyl moiety from an oxygen atom to a nitrogen atom had such a big influence on the reaction that not one compound of the threee titanocene classes could be synthesised, and it was also not possible to obtain diarylmethyl-substituted titanocenes with the use of either of the fulvenes. When benzyl-substituted titanocene 6a was tested agianst pig kidney cells (LLC-PK), an antiproliferative effect that result in an IC50 value of 43 mu m, was observed. This IC50 value is in the lower range of the cytotoxicities evaluated for titanocenes up to now. ansa-Titanocene 4a surprisingly showed, when tested on the same cell line, a proliferative effect together with a fast rate of hydrolysis.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |