Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytesBrooks, G., Poolman, R.A., McGill, C.J. and Li, J.-M. (1997) Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 29 (8). pp. 2261-2271. ISSN 0022-2828 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1006/jmcc.1997.0471 Abstract/SummaryThe molecular mechanisms responsible for the alterations in proliferative capacity of cardiac myocytes during development remain unknown; however, cell cycle dependent molecules may be involved. We have determined the expression of cyclins A, D1–3and E, and cyclin-dependent kinases (CDKs) 2, 4, 5 and 6 and cdc2 in freshly isolated rat cardiac myocytes from fetal (18 days gestation), neonatal (2 days post-natal) and adult animals by immunoblotting. Our results show a dramatic decrease in expression of these proteins during normal cardiac development, such that levels are highest in fetal myocytes but are significantly down-regulated in adult cells (P<0.05, in each case). We also have determined thein vitrokinase activities of cdc2, CDK2, CDK4, CDK5 and CDK6 immunocomplexes in fetal, neonatal and adult myocytes. There was a consistent and significant loss of cdc2, CDK2, CDK4 and CDK6 kinase activities in adult cardiac cell lysates (5.3-, 10.6-, 1.5- and 1.9-fold decreases, respectively) when compared to neonatal samples (P<0.05); CDK5 activity showed a similar trend but failed to reach significance. In conclusion, our results show that the expression and activities of various positive regulators of the cell cycle are down-regulated significantly during development of the cardiac myocyte, concomitant with the loss of proliferative capacity in adult myocytes. Down-regulation of these proteins may be pivotal in the withdrawal of the cardiac myocyte from the cell cycle.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |