Interaction of 6,6′′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2′:6′,2′′-terpyridine (CyMe4-BTTP) with some trivalent ions such as lanthanide(iii) ions and americium(iii)
Lewis, F. W., Harwood, L. M.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1039/B924988E Abstract/SummaryThe new ligand 6,6 ''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)2,2':6 ',2 ''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2 ''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1 : 2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1 : 1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1 : 2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1 : 1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)](n)(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (+/-20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1 : 1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1 : 1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1 : 2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |