Characteristics of Langmuir Turbulence in the Ocean Mixed LayerGrant, A. L. M. and Belcher, S. E. (2009) Characteristics of Langmuir Turbulence in the Ocean Mixed Layer. Journal of Physical Oceanography, 39 (8). pp. 1871-1887. ISSN 0022-3670
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1175/2009JPO4119.1 Abstract/SummaryThis study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence. Comparisons are made between the LES results and observations, but the lack of information concerning the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be significantly enhanced over that due to normal shear turbulence.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |